Operating Systems - Part 1

What is an operating system?

- A piece of software that sits between all programs and the computer's hardware
- Manages computer
- Runs programs
- Interface between user and hardware
- Provides services to programs and users
- Protects users and programs from each other

Common Operating Systems

- Large systems: Mainframes pioneered operating systems since the 1960s; IBM still run mainframes; Handles 1000s of users (IBM mainframes also run Linux); Supercomputers now tend to run Linux
- Minicomputers: OpenVMS; Unix and Unix-like operating systems (such as Linux, BSD, Solaris, Mac OSX)
- Personal computers: Linux, Microsoft Windows, Mac OSX (which is acutally Unix!)
- Embedded systems: Military, telecommunications (suh as, QNZ, Windows CE, VxWorks)

Operating System Structure: Unix "onion" model"

- Hardware
 - o CPU central processing unit
 - Memory
 - Input/Output Mouse, keyboard, display, printer
 - Storage Flash, hard drive DVD
- Kernel
 - Controls the hardware directly device drivers, firmware
 - Provides resources and services to applications – e.g. CPU, memory, storage, video, mouse, memory
 - Manages access to privileged resources
- Applications
 - Programs to do "something" for the user
- Services
 - o Service are programs that run "behind the scenes"
 - Usually provides system support e.g. security, networking
- Shell
 - o Also known as Command Line Interface, Terminal, etc.
 - o A program that makes a set of commands available to the user
- GUI
 - o A user-friendly interface on top of the operating system

Where does the OS fit in?

- An OS sits between the users and their programs on one side, and the computer and hardware on the other
- User → User program → Operating systems → Hardware devices

Operating Systems - User Interfaces

Psychology for User Interfaces

- Cognitive scientists analyse how people think
- Designing a user interface is hard work, and rarely done right the first time

Computer Interfaces

- Command Line Interface
 - o Interact through the keyboard and a monitor which only prints text
 - o E.g. sh 1969, CPM, cmd.exe

Strengths	Weaknesses
 Greater flexibility Find turning → parameters Essential for system administration Faster, less overhead Runs on simple hardware Can run remotely Robust – difficult to crash 	 Hard to learn → cryptic commands and parameters Multiple options → more than 1 way to do things Output often cryptic or non-existent Inconsistent commands → diff. versions No graphics

- Graphical User Interface
 - $\circ \quad \text{Interact via windows, icons, menu, pointer device} \\$
 - o E.g. Apple Mac OSX, Microsoft Windows, Unix Gnome, KDE

Strengths	Weaknesses
- Little experience required	- Can't do everything
 Good for graphics → artwork, desktop 	- Can crash the system
publishing	- User is unsure of what the OS is really doing
- User friendly	- Slows computer down
- Hides complexity from users	- Needs better hardware
	- Hides complexity from users

Operating Systems - UNIX

Where is UNIX used?

- Used on most of the computers running the Internet
 - Web servers, domain name servers, email servers, web hosting
 - o Unix isn't popular for ordinary users, however MAC OSX is passed on Unix
- Based from 2 original versions
 - System V the original version from AT&T
 - o BSD From the uni of California

Popular current versions of Unix

Unix Verion	Description
Solaris	Sun's version of Unix (based on system V)
Linux	Free verion on Unix (based on system V and BSD)
Mac OS/X	Runs on the latest Macs (based on BSD
AIX	Version of Unix from IBM (based on system V)

Unix Irregularities

- Ad hoc Development
 - Ouite a lot of Unix, especially the various scriptoing languages and the individual commands grew up in an ad-hoc and unregulated, haphazard fashion
 - While this resulted in a much more powerful and versatile operating system, it also results in being rather confusing at the user level

Why Unix has survived

- No one owns these ideas
 - o Unix is a set of ideas, none of which are secret
 - o Any person or group is free to implement these ideas.
- Unix is based on simple concepts: Files, processes, permissions and users
 - o Even hardware devices e.g. dev/mouse are represented as files
 - o This has simplified the conceptual picture of Unix (if not the internal code)
 - o It has also allowed Unix to incorporate new ideas and technologies quite easily
- Unix is portable
 - O Unix is written in the programming language C → Any computer with a C compiler can usually compile the source code
 - The technology of computer hardware has evolved enormously since 1970, but it is still comceptually the same
- Some Unix varieties are free
- Unix is efficient, stable and relatively secure
 - o Fast and stable (system crashes are rare)
 - Designed for security for multi-user systems files have owners, security permissions are tight → fewer viruses
- Unix as a set of tools approach
 - The Unix CLI has some very powerful features. Specifically simple commands, pipes and I/O redirection
 - You can create vary powerful ad hoc tools → by passing the output of one command to another command

File systems and file manipulation

- A file system is a part of the OS that manages data storage and access
- There are many components of a file system: Disk physical structure, disk logical structure, file allocationg methods, file management

Disk Physical Structure:

- A physical disk is organised into:
 - o Tracks: Concentric rings on the platter
 - Heads: Reads data from a platter
 - o Cylinders: Collection of all tracks on platters (which are horizontally in the same position)
 - Sectors: Part of a track for data

Disk Structure

- A disk is a stack of magnetic platters
 - This stack is divided into cylinders
 - Each cylinder contains circular tracks (which are in turn, divided into sectors)
- Read/write operations are provided by the disk
 - o These move concurrently along the fixed disk arm
- The disk itself rotates with constant angular velocity to provide access to every sector

Disk Formatting

- Formatting is the operation which creates the physical disk structure
- Formatting is organising and marking the surface of a disk into tracks, sectors, and cylinders
- It is also sometimes incorrectly a term used to signify the action of writing a filesystem to a disk

Disk Logical structures

- Partitions: Disks can be subdivided into partitions each is an independent storing device
- Blocks: The OS views all the disk space as an array of fixed size logical blocks (a logical block is the smallest unit of data to transfer

File allocation methods

- Block: Space is allocated to a file as one or more blocks
- Directory: A table of information that the OS uses to locate blocks associated with files on a disk
- There are three types of file allocation: Contiguous, chained/linked, indexed

Contiguous allocation

- A single contiguous set of blocks is allocated to a file at the time of file creation
- Supports random access: You know exactly where every block is after the starting block
- Fragmentation of unused space (external fragmentation) will occur, needs compaction
- Often used in magnetic tapes rather than disks

Chained allocation

- File is written as a collection of non-contiguous blocks
- File is implemented as a linked list of blocks
- Each block contains a (pointer to) the address of the next block
 - Last block contains invalid (negative) number (acts as an endof-file marker)
- Directory entry contains the head (starting) block number and length of the file
- Chained is good for sequential access, bad for random access

FILES ON THE DISK

File B

File C

File A

5

4

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

5

File Index

A

1

B

2

File Index

A

1

B

1

Index

A

Index

Inde

Indexed allocation

31268 WEB SYSTEMS-LECTURE 2&3

- File is stored as a data structure, called an inNode
- Each file/directory is referenced by an iNode
- Very efficient use of space and fast to read blocks
- iNodes and directories in Unix

iNodes and Directories in Unix

- The iNode system is used in Unix, where all iNodes are numbered
- In addition to Inodes, there are specialized blocks on a file known as directories. Directories contain the names of files and the iNode number for the file
- Notice that the iNode structure is a tree
- An iNode contains all the relevant data about a file. It also contains the locations (addresses) of the first 10 or so blocks of data.

What does an iNode store?

- Length of the file in bytes
- Device ID (which device contains the file)
- User ID (the owner of the file)
- Group ID (the group the file belongs to)
- File mode (file permissions)
- Timestamps (ctime, mtime and atime)
- Reference count (how many hard links point to it)
- Pointers to the disk blocks that store the files contents

File management: Files and directories

- A file manager performs functions related to storage and file management
 - Displays a list of files on a disk
 - o Displays the amount of used or free space on a disk
 - Organising, copying, renaming, deleting, moving, sorting files
 - o Creating/deleting directories/folders