ELEC5618: SOFTWARE QUALITY ENGINEERING

LECTURE NOTES

WEEK 1: AN INTRODUCTION TO SOFTWARE QUALITY ENGINEERING

Software Quality Engineering

- A process that ensures that developed software meets and complies with defined or standardised quality specifications
- An ongoing process within the software development lifecycle that routinely checks the developed software to ensure it meets desired quality measures

WEEK 2: FUNDAMENTALS OF SOFTWARE QUALITY ASSURANCE

Software Quality

- The degree to which a system, component, or process meets specified requirements
- Conformance to explicitly stated functional and performance requirements, explicitly documented development standards and implicit characteristics that are expected of all professionally developed software

Software Quality Assurance

John Marc Quality 7,000 Carrot			
Requirements	Design	Implementation	Operation
Completeness is hard to	For reliability,	Limited success with	Fixing found bugs
achieve (complexity)	manufacturability,	statistical process	
	maintainability	control	

Software Quality Control: fault or failure detection through static or dynamic testing of artefacts

- Outputs: acceptance decisions, rework, process adjustments
- Tools: Pareto analysis, statistical sampling, Six Sigma, quality control chards

Software Quality Models & Characteristics

Factor-Criteria-Metrics-Model	ISO/IEC 9126	
Factors (to specify): they describe the external view	Functionality: are the required functions available?	
of the software, as viewed by the users	Reliability: how reliable is the software?	
Criteria (to build): they describe the internal view of	Usability: is the software easy to use?	
the software, as seen by the developer	Efficiency: how efficient is the software?	
Metrics (to control): they are defined and used to	Maintainability: how easy is it to modify?	
provide a scale and method for measurement	Portability: how easy is it to transfer environments?	

Software Quality Assurance Approaches

Manual	Automatic	
Techniques: writing unit test with Junit, code review	Techniques: source code analysis, run-time analysis	
+ low false positive rate	+ find implementation defects	
+ defects of requirement	+ easier to reuse	
- difficult and expensive	- potential false positive	
- hard to reuse	- cannot fine requirements defects	

ELEC5618: Software Quality Engineering Semester 1, 2016