Cellular Respiration (Week 3)

- How macromolecules make energy
- Cellular respiration occurs in the mitochondria
- When we eat we have triglycerides, larger carbs and proteins which come into our digestive system which forms fatty acids, glucose and amino acids
- We use carbon chains in mitochondria to make energy

- Kreb's cycle:
- Carbs are the easiest to use
- For cellular respiration:
 - o Organic molecules in
 - o Broken down to a simple form
 - o Catabolism results in energy release
 - o 60% lost as heat
 - o 40% ATP for cell activities
- ATP powers our whole body
- Energy doesn't disappear it changes form
- Catabolic reactions when food is broken down produces energy for body

- Main purpose of CR is to generate ATP
- Stage 1: Digestion in GI tract lumen (we eat something)
- Stage 2: Anabolism and formation of catabolic intermediates within tissue cells (Nutrients used in glycolysis)
- Stage 3: Oxidative breakdown in mitochondria of tissue cells (produce energy that we use)
- Metabolism all the chemical reactions that occur in an organism
- Cellular metabolism all the chemical reactions within a cell
 - Provide energy needed to maintain homeostasis and to perform essential functions
- Decomposition reactions
 - o Breaks large complex molecules into smaller fragments that can be absorbed
- Hydrolysis
 - o Decomposition reaction involving water
 - o Components of the water molecule join the new fragments
- Decomposition reactions are known as catabolism
- When a covalent bond is broken it releases energy that can be used for work
- High energy bonds
 - Most chemical reactions that release energy occur in the mitochondria but most activities requiring energy occur in the cytoplasm
 - Needs to be in a form that can be moved around
 - o High energy bonds (made by enzymes)
 - o Most high energy compounds are derived from nucleotides e.g. ADP, ATP
 - o High energy bonds connect a phosphate group to an organic molecule
- Formation of high energy bonds
 - o Nitrogenous base i.e. adenine added to a ribose makes adenosine
- High energy bonds stores energy through anabolism
- Requires ATPase to synthase
- Without ribose life wouldn't be possible (energy use)
- What is an enzyme?
 - Most things that happen in the body are possible because specific enzymes make it possible (catalyse)
 - o They're a protein
 - o Specifity, saturation limits, regulation
 - Cofactors: functional