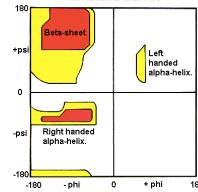
Proteins

- Linear polymer of amino acids
- Is only functional when the chain is folded in a defined way to give a 3D structure

Protein Structure

- α-Helix
 - No rotation around C-N bond
 - Stablised by hydrogen bonds between carbonyl O and amide H
 - Dipole property of H bonds give helices dipoles
 - Carboxyl end has a partial negative charge
 - Right handed is most common (clockwise rotation from amino terminus)
 - 3.6 resudes/turn of chain
- β-Pleated Sheets
 - Antiparallel or parallel
 - o Pleated geometry of peptide bonds
 - Amino acid side chains lie above and and below the strands (no room inbetween strands)
- β-Turns
 - Direction change due to force of right side chain on the peptide when N-terminal peptide bond is in cis configuration
- All levels of protein structure are:


primary structure (amino acid sequence)

- local secondary structure (α-helices and β-sheets)
 - motifs (groups of secondary structures (e.g. β α β motif, β-barrel)
 - domains one or more motifs (usually functional units e.g. a substrate binding domain)
 - tertiary structure (completely folded polypeptide chain)
 - quaternary structure (binding together of two or more fully folded polypeptide chains e.g. coiled coil of keratin is termed α_2 dimer of two identical polypeptide chains, hemeoglobin is $\alpha_2 \beta_2$ tetramer of two α polypeptide chains and two β polypeptide chains).

Restrictions on Protein Bonding

- No rotation around peptide bonds due to their partial double bond characteristic

 The Ramachandran Plot.
- α-carbon and nitrogen bond phi bond
- α-Carbon and carbon bond psi bond
 - Both bonds cannot be 0 degrees as they would be overlapping
- Some bond angles are not allowed due to steric hindrance with adjacent AA side chains
- Ramachandran plot shows all allowed bond angles

Protein Folding

- Conclusions from Anfinsen's Experiment
 - o Unfolded proteins are inactive
 - o Correct disulphide bond formation occurs after folding
 - All the information for a protein to fold is contained in the amino acid sequence
 - o Disulphide bonds stabilise folded proteins

Properties of Amino Acid Side Chains

- Amphipathic α -helix with hydrophobic residues facing inwards and hydrophilic residues facing the aqueous solvent
- Hydrophobic α -helix with hydrophobic residues where the helix is buried in the hydrophic interior of the protein
- Hydrophilic α -helix with mainly hydrophilic residues where the helix is completely accessible to the aqueous solvent
- These states are similar for β -sheets

Thermodynamics of Protein Folding

- Must be a free energy change (negative)
- Protein in a vacuum has a favourable energy change

	Non polar	polar
ΔHchain	unfavourable	Unfavourable
-T∆S chain	Unfavourable	Unfavourable
ΔH solvent	Favourable	Favourable
-TΔS sol	Favourable	Favourable
ΔG total	Favourable	Neutral

Leventhal Paradox: Problem with Protein Folding

- Not a random process takes too long for all possible folding conformations
- Folding occurs so that the lowest energy state can be reached
- Protein must attain higher energy state than transition state to progress to intermediate state

Heat Shock Proteins

- HsHsp70/Hsp40 bind to exposed hydrophobic regions, preventing aggregation/unwated interaction with other molecules
- Deliver unfolded/partially folded protein to Hsp60/Hsp10 chaperoning complex