Evolution of brain:

- 1. Forebrain, midbrain, & hindbrain different brain regions that carry out different types of processing
- 2. Identifiable neural pathways projecting from one area to next

3. Each part of brain projects to next in an orderly fashion creating organized regions that can be mapped

Hindbrain functions:

- Regulates arousal
- Relay station

Midbrain:

- Tectum: involved in orienting to visual and auditory stimuli
- * Tegmentum: is involved in movement and arousal
- Play an important role in learning to produce behaviours that minimise unpleasant (aversive) consequences and maximise pleasant (rewarding) consequences

Subcortical (below cortex) areas of the brain

Forebrain:

The Forebrain is involved in complex 'higher order' sensations and behaviours

- Hypothalamus: Helps regulate eating, sleeping, sexual activity and emotional experiences
- * Thalamus: Processes incoming sensory information and transmits it to higher brain areas
- Basal Ganglia: Involved in the control of movement and also plays a part in 'automatic' responses and judgements

-Limbic System

- * Septal area: involved in pleasure, relief from pain, emotionally-significant learning
- Amygdala: involved in learning and remembering emotionally significant events, and recognition of fear
- # Hippocampus: involved in the storage of new memories

Interconnected group of structures

- Parts of cortex
- Thalamus
- Hypothalamus
- Hippocampus
- Amygdala
- Influences emotions, memory, & social behavior
- Emotionally charged memories

-Basal ganglia (what is it made up of important)

- * Series of nuclei located deep within forebrain, left & right of thalamus
 - * Controls movement & posture
 - Degeneration of basal ganglia associated with Parkinson's disease

Cerebral cortex

- Frontal lobe (red)
- Temporal lobe (green)
- Parietal lobe (yellow)
- Occipital lobe (under yellow)
- Cerebullum (blue)

- > Functions of cerebral cortex:
 - o Provides for flexible control of patterns of movement
 - o Permits subtle discrimination among complex sensory patterns
 - Makes possible symbolic thinking
- > Cortex is devided into two sections:
 - Primary areas
 - Association areas

Lobes of the cerebral cortex

Frontal lobe damage and personality

- * Frontal lobe function in personality is evident in the case of Phineas Gage
 - Gage suffered frontal lobe damage after an accident involving a dynamite tamping rod
 - Gage was a railroad supervisor prior to the damage; after the damage he became childish and irreverent, could not control his impulses, and could not effectively plan.

Cerbal cortex

- * Each hemisphere controls opposite side of the body (contralateral)
- Corpus callosum is major connection between left & right hemispheres of cerebral cortex

Brain specialization

(In most people)

- ★ Left hemisphere specialized for processing Speech & Language
- Right hemisphere appears specialized for spatial, musical, & drawing tasks

Cerebal lateralization

- Hemispheric specialization
 - ★ Left hemisphere is dominant for language, logic and complex motor behaviour.
 - Right hemisphere is dominant for non-linguistic functions including forming visual maps of the environment.