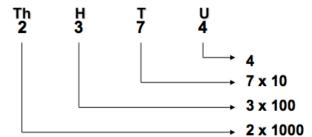
MULTIPLICATIVE REASONING

Examples

- Proportion
- Ratio
- Rates
- Fractions and decimals
- Percentages
- Indices

Multiplicative strategies


- Direct counting uses addition
- Repeated addition starts to recognise equal groups, rhythmic counting
- Multiplicative operation knows multiplication

Conceptual development research

- Young children have simple x and / ideas before formal schooling through modeling and representing
- Students + x / without meaning

Hindu-Arabic place value system

Structure

Expanded form

$$2374 = 2 \times 10^3 + 3 \times 10^2 + 7 \times 10^1 + 4 \times 10^0$$

Possible reasons for poor understanding of place value

- Limitations of Dienes blocks
- Numeration system structure not taught well and its purpose
- Too many written calculations

Partitive division – give the total number of items and number of groups. Easier, teachers are more comfortable

Quotitive division – give the total number of items and number in each group (NOT the number of groups). More difficult

TEACHING AND LEARNING MULTIPLICATION AND DIVISION CONCEPTS AND PROCESSES

Conceptual development

- Maths is reliant on strong understanding of x and / e.g. base 10 no system, fractions, decimals, ratio, functions, probability, length, area, volume, time, data analysis, graphing, coordinate geometry, algebraic reasoning, number patterns
- Understanding equal groups structure
- Pattern and structure

- Making connections between multiplication and division
- X and / as commutative and inverse relationships

Making connections between additive and multiplicative concepts

Multiple (skip counting) 3, 6, 9, 12 etc Repeated addition 3 + 3 + 3 + 3 = 12111 111 111 111 1111 4 + 4 + 4 = 121111 1111 Array model '3 by 4' 1111 1111 1111

Row and column structure

Commutitivity $4 \times 3 = 12$ $3 \times 4 = 12$ $12 \div 4 = 3$ $12 \div 3 = 4$ Inverse relations

Sharing by dealing (one by one)

<u>Division by grouping</u> (estimate the number in each group) <u>Division by repeated subtraction</u> (12 - 3 = 9; 9 - 3 = 6; 3 - 3 = 0)<u>Use double counting</u> (often with fingers to record the count)

> 1, 2, 3 (1 group) 4, 5, 6 (2 groups) 7, 8, 9 (3 groups) 10, 11, 12 (4 groups)

Research so far...

- Children understand X and / before school through modeling, counting and representation
- Students often + x / without meaning
- Children can recall X tables without understanding concepts
- Misconceptions that multiplication always makes bigger (X 0.5?!) and division is always smaller (/0.25)