Table of Contents

Lecture 2: Statistics/Overview of Experimental Design	2
Lecture 3: Respiration Pre-Prac/Scientific Reporting	5
Lecture 4: Respiration Post-Prac/ Human CV Pre-Prac	8
Lecture 5 Human CV Post-Prac/Scientific Report Intro Writing	16
Lecture 6: Consensus on Thermoregulation Protocol	19
Lecture 7 Scientific Report Results Writing/ Data Analysis	21
Lecture 8 Data Interpretation & Discussion Writing	24
Lecture 9 Muscle and Exercise Pre-Prac and Experimental Ethics	26
Lecture 10 Muscle and Exercise Post-Prac/Animal CV Pre-Prac	31
Lecture 11 Animal Ethics	34

Lecture 2 Statistics/Overview of Experimental Design

- Scientific Research needs to be hypothesis driven
- Exam data given, need to formulate hypothesis
- Acute- short term exposure
- Chronic long term exposure

1 Identifying Keywords

Look for:

- Important keywords
- Supplementary keywords
- Irrelevant words
- Words on issues to be excluded from your answer

2 One or more general hypotheses which explains the claim

Keep in mind you will need <u>measurable outcomes</u> to be tested

3 Consider underlying physiological mechanisms -> expand on them

Manipulation Hypothesis

5 essentials

- Independent variable: What you're going to change e.g. caffeine
- Dependent variable: What you're measuring e.g. blood pressure
- Mechanism: Must be measurable e.g. increased cardiac output
- Species: e.g. humans, rodents
 - Response in humans may be v. different in rodents
 - May need to be more specific e.g. athletes
- Direction: Increased, decreased NOT ALTERED

Aim vs Hypothesis

- Aim
 - Investigate
 - Describe
 - Characterise
 - "The aim of this study is to..."
 - o e.g. investigate the chronic effect of caffeine in humans
- Hypothesis
 - More descriptive
 - "The hypothesis associated with this study is...

4 What approach would you take to the investigation?

- Asking the subjects to complete a questionnaire
 - o Might lie
- A minimum number of subjects (20) is preferable b/c wide genetic variability in people
- No point in having extra subjects
- Best approach
 - Measure heart rate and bp of 40 subjects (20 caffeine, 20 placebo) for three months, then repeat measurements
- Subjects may need some time without caffeine to eliminate previous effects

5 Would animal or human studies, or both, be appropriate?

- Ideally, use human subjects (if ethical)
- Criteria for choosing subjects
 - Health
 - Age
 - Strain
- Availability, numbers, cost

6 Cells, tissues, or whole organisms?

- What else can you find out from cells or tissues that you cannot from a whole organism? e.g. record directly from neurones in the brain
- Invasive procedures needed to target particular cells in whole organisms?

7 What controls would be appropriate in your experiments?

- The control group and the treatment group should be the same except for one variable
- Human and/or animal subjects
- Serial controls: Same subjects used as their own control
 - Alternate b/w caffeine and placebo
- Parallel controls: Different control subjects from experimental subjects
 - But same characteristics
- Important characteristics of control and treatment groups
 - o Gender
 - Age
 - Diet
 - Fitness
 - Health
- Prefer same total numbers, same number of different types

8 How would you choose the number of experimental tissues/ subjects?

- 10/20 subjects are usually a reasonable number of subjects in physiological experiments
- Must consider cost and feasibility in a real world

9 What issues are important in the experimental protocol?

- Time of Day: Changes in bp and heart rate
 - Experiment and controls done @ same time of day?
- **Duration of experiment:** Chronic (days, weeks, months?) or acute (short-term)
 - Must eliminate acute effects
 - e.g. can't measure straight after taking caffeine. Must wait for it to be cleared by the body
 - Long-term experiments, can make multiple measurements e.g. once a day to follow development
 - Basal (resting) measurements must be done on subjects who have not had caffeine for a period of time

10 What are the ethical considerations?

- What limitations might these impose on your experimental design?
 - Invasive procedures, surgery, drugs injections
 - Side effects?
 - Pain? Discomfort? Stress? Harm?
- Restrict to a room for the duration?
- Informed consent for volunteers

11 Does your experimental design adequately test your hypothesis?

- Would the results either
 - Refute your hypothesis OR
 - Provide support for your hypothesis

Statistical Terms

- Mean: average
- **n:** number of samples or subjects
- Standard deviation (SD): measure of the spread of a distribution/measure of sample variability
- Standard error of the mean: standard deviation of all of the mean values

$$SEM = \frac{SD}{\sqrt{n}}$$

Normal Distribution

- Density Curve which describes the shape of the shape of the distribution
- 68-95-99.7 rule
 - o 68% of observations fall within 1 std dev of the mean
 - o 95% of observations fall within 2 std dev of the mean
 - o 99.7% of observations fall within 3 std dev of the mean

T-test

- Assume that prac results fall within the normal distribution
- Perform statistical test based on normal distribution
 - : Test whether two samples are statistically the same
- Use T-test to determine the p-value probability of a false positive
- If p-value is smaller than 0.05: Results are statistically significantly different
- If p-value is larger than 0.05: Results are NOT statistically significantly different
- Lower p-value= more confident that samples from the two groups are significantly different (not a false positive)