Week 6: Constraint Satisfaction Problems

CSP examples

Backtracking search for CSPs

Problem structure and problem decomposition
Local search for CSPs

Constraint Satisfaction Problem:
state is defined by variables X, with values from a domain D.

Constraint graph:

(v
14
RO

O

Discrete variables:
Takes O(d") to complete.
d = domain size
n = number of variables
Continuous variables:
Linear constraints solvable in polynomial time.

Constraint varieties:
Unary SA I=green
Binary SA!=VIC
Higher order 3 or more variables
Preferences (Soft constraints) red > green

Real world CSP examples:
e \Who teaches what class
Which class is offered when and where (timetabling)
Hardware configuration
Spreadsheets
Transportation scheduling
Factory scheduling
Floorplanning

Using backtracking search instead of brute force incremental search makes our time go from O(n!d") to O(d")



Backtracking search:
AKA Depth First Search for CSPs with single variable assignments.
Pseudocode:

BacktrackingSearch(csp) returns (solution or failure)
return RecursiveBacktracking(assignment, csp);

RecursiveBacktracking(assignment, csp) returns solution/failure
if assignment is complete then return assignment
var <- FindUnassignedVar()
for each value in OrderDomainValues()
if value is consistent with Constraints(csp) then
add (var == value) to assignment
result <- RecursiveBacktracking(assignment, csp)
if result !- failure
return result
remove (var == value) from assignment
return failure

Improving backtracking search speed:
e Which variables should be assigned next?
e In what order should its values be tried?
e Can we detect certain failures early?
e Can we take advantage of the structure of the specific problem?
Other methods:
e Degree heuristic
o Choose the variable with the most constraints on remaining variables.
Least constraining value
o Choose the value that rules out the fewest values in other remaining variables.

e Forward checking
o Keep track of remaining legal values for other remaining variables
o Terminate when any variable runs out of legal values.
e Constraint propagation - Arc consistency
o Arc between X & Y. Has to be a value in Y that satisfies every value in X (constraint)
o If X loses a value, neighbors of X need to be rechecked.
o Detects failure earlier than forward checking.
e Find independent subproblems

o Aka tasmania.

Tree structured CSPs
Solved in O(nd?) compared to O(d")
Choose a variable as root, order from root to leaves in a line.
Nearly tree-structured CSPs
Cut a section size ¢ out that makes the rest of the graph a tree. (eg remove SA)
Solved in O(d° (n-c) d?) compared to O(d"), which is a lot faster if ¢ is small.

Can also use Hill-Climbing
e Assign all variables unsatisfied constraint values.
e Reassign variable values by the min-conflicts heuristic.



