» Drug Targets 1: Protein Targets for Drug Action - Protein targets for drug action: RICE - 1. Receptors - 2. Ion channels - 3. Carriers - 4. Enzymes ### # Receptors - Proteins found in the cell membrane - Responsible for receiving chemical information from hormones, transmitters, cytokines and growth factors. - Cannabis: CB1 receptor (cannabinoid receptor type 1) - Cannabis is the most widely used illicit drug in the world. - The main psychoactive constituent (cannabinoid) is Δ^9 -THC. - Δ^9 -THC binds to CB1 receptors in the brain, producing classical cannabinoid effects (euphoria, anxiety, memory impairment and appetite stimulation). - Mechanism of action: - This is a synapse containing the endogenous cannabinoid system. The CNS contains CB1 receptors and endogenous mediators (endocannabinoids) such as anandamide and 2-AG. These endocannabinoids are physiological ligands for the cannabinoid receptors. - Glutamate acts on glutamate receptor proteins in the postsynaptic membrane, and is responsible for 'activating' a person. - × **Glutamate is the main excitatory neurotransmitter**. It depolarises neurons by increasing membrane Na⁺ conductance. - The presynaptic CB1 receptors are autoreceptors i.e. this system modulates the release of other neurotransmitters. - \times Δ^9 -THC mimics the endogenous mediator anandamide by binding to CB1 receptors and inhibiting the release of glutamate (presynaptic inhibition). - This reduces 'activation' of a person and produces a calming effect. • Sites of biotransformation in the cell: ### • Phase I reactions: - Chemical conversion of a lipophilic chemical into a more polar analogue. - Inclusion of a new functional group (usually by oxidation, reduction or hydrolysis), which is subject to phase II metabolism. - <u>Example</u>: Oxidation of the O-ethyl group in phenacetin produces a phenol, with ~10 fold decrease in lipophilicity. ### # Cytochromes P450 - P450 (aka CYP) is the major class of phase I biotransformation enzymes. - Unlike most enzymes, **P450s** are multifunctional enzymes that act on diverse substrates, including the xenobiotics and endobiotics to which we are exposed. - **P450s have low substrate specificity** can accommodate a wide range of substrates. - However, there are still some drugs and chemicals that are oxidised by a single P450. - Factors that affect P450 activities can markedly affect drug elimination. - <u>Components of the Phase I P450 System</u>: Lipophilic xenobiotics and endobiotics are oxidised by cytochromes P450s. ### P450 enzyme Site of oxygen activation (activated oxygen inserted into substrate) ### NADPH - Source of electrons that drives activation of oxygen. - The cofactor NADPH-P450 reductase - Transfers electron from NADPH to P450 enzyme. ### Membrane phospholipid To reproduce the environment within the endoplasmic reticulum. ### • Characteristic P450 Reactions: Drugs often form several metabolites because they contain more than one substituent that can be oxidised. ### # Pharmacokinetic Parameters - After absorption, a drug builds up effective serum concentrations, but is also converted to forms that are more readily eliminated. - The characteristics of these processes are described by a series of pharmacokinetic parameters. # Pharmacokinetic curve of a drug in the body | Pharmacokinetic
Parameter | Definition | |---|--| | C _{max} (μg/mL) | Peak plasma concentration (C_p) Usually following an oral dose Reflects drug disposition in terms of bioavailability and distribution | | T _{max} (h) | Time taken to reach C _{max} | | C_{min} (µg/mL) | Trough C_p at the end of the dosing interval (before the next dose is
given) | | Clearance (L/h) | Volume of plasma cleared of the drug per unit time Measure of efficiency of drug elimination Irreversible elimination from circulation One-way elimination (sweat, urine, etc.) and/or metabolic conversion At a given IV dose rate, clearance is the sole parameter determining steady state [drug]_{plasma} | | Volume of distribution (L or L/kg) | V_d = dose (g) / initial plasma concentration, C₀ (g/L) Relates amount of drug in body to [drug]_{plasma} Measure of extent of distribution The higher the V_d, the greater the proportion of drug that is distributed outside the blood stream V_d is not a real volume; it is the apparent volume into which the drug appears to distribute to achieve the measured C₀ Used to calculate loading dose (initial dose required to achieve a given C_p) Back-calculated from [drug]_{plasma} following given dose | | Half-life (h) | Time to halve drug amount in body Duration of action following single dose Determined by clearance (CL) and V_d t_{1/2} = 0.693 × V_d/CL Clearance follows first order kinetics (mostly exponential) C_t = C₀ × e^{-kt} Doubling the dose only increases duration by one half-life | | AUC _{0-X} (μg·h/mL) | Area under concentration-time curve | ### Flexibility of ACh - Staggered conformation much more energetically stable than eclipsed. - Staggered gauche conformation more stable than staggered anti because of stabilising intramolecular interaction between negative dipole of ester group and positive guaternary nitrogen. - Pulls energy of gauche conformer below energy of anti conformer. ### Selectivity of Muscarine and Nicotine ## # Muscarinic Agonists - Rotational flexibility about C-C bond can be restricted by installing cyclopropane rings. - Trans and cis isomers interconvert the position of the quaternary amine. - Trans (but not cis) isomer is a much more potent agonist than ACh at the mAChR. - Depends on whether N⁺Me₃ and OAc groups are closer to anti than gauche configurations. ## S-A Relationships for Cholinergic Drugs 2 ### # Acetylcholinesterase Inhibitors - Compounds which inhibit the activity of AChE cause a build up in the concentration of ACh in the synaptic cleft, which can result in an overstimulation of the cholinergic receptors in the PNS and CNS. - Acetylcholinesterase inhibitors have toxic and therapeutic uses.