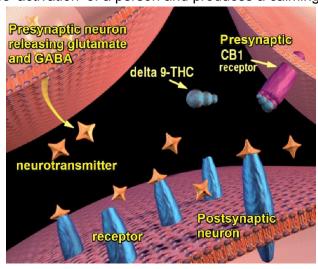
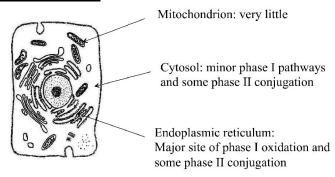

» Drug Targets 1: Protein Targets for Drug Action

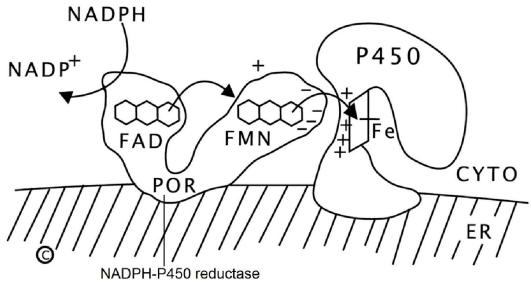

- Protein targets for drug action: RICE
 - 1. Receptors
 - 2. Ion channels
 - 3. Carriers
 - 4. Enzymes

Receptors


- Proteins found in the cell membrane
- Responsible for receiving chemical information from hormones, transmitters, cytokines and growth factors.

- Cannabis: CB1 receptor (cannabinoid receptor type 1)
 - Cannabis is the most widely used illicit drug in the world.
 - The main psychoactive constituent (cannabinoid) is Δ^9 -THC.
 - Δ^9 -THC binds to CB1 receptors in the brain, producing classical cannabinoid effects (euphoria, anxiety, memory impairment and appetite stimulation).
 - Mechanism of action:
 - This is a synapse containing the endogenous cannabinoid system. The CNS contains CB1 receptors and endogenous mediators (endocannabinoids) such as anandamide and 2-AG. These endocannabinoids are physiological ligands for the cannabinoid receptors.
 - Glutamate acts on glutamate receptor proteins in the postsynaptic membrane, and is responsible for 'activating' a person.
 - × **Glutamate is the main excitatory neurotransmitter**. It depolarises neurons by increasing membrane Na⁺ conductance.
 - The presynaptic CB1 receptors are autoreceptors i.e. this system modulates the release of other neurotransmitters.
 - \times Δ^9 -THC mimics the endogenous mediator anandamide by binding to CB1 receptors and inhibiting the release of glutamate (presynaptic inhibition).
 - This reduces 'activation' of a person and produces a calming effect.

• Sites of biotransformation in the cell:



• Phase I reactions:

- Chemical conversion of a lipophilic chemical into a more polar analogue.
- Inclusion of a new functional group (usually by oxidation, reduction or hydrolysis), which is subject to phase II metabolism.
 - <u>Example</u>: Oxidation of the O-ethyl group in phenacetin produces a phenol, with ~10 fold decrease in lipophilicity.

Cytochromes P450

- P450 (aka CYP) is the major class of phase I biotransformation enzymes.
- Unlike most enzymes, **P450s** are multifunctional enzymes that act on diverse substrates, including the xenobiotics and endobiotics to which we are exposed.
 - **P450s have low substrate specificity** can accommodate a wide range of substrates.
 - However, there are still some drugs and chemicals that are oxidised by a single P450.
- Factors that affect P450 activities can markedly affect drug elimination.
- <u>Components of the Phase I P450 System</u>: Lipophilic xenobiotics and endobiotics are oxidised by cytochromes P450s.

P450 enzyme

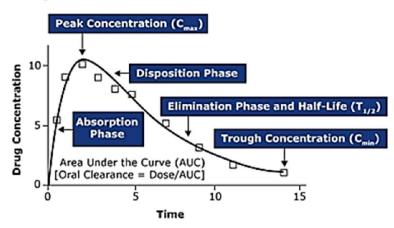
Site of oxygen activation (activated oxygen inserted into substrate)

NADPH

- Source of electrons that drives activation of oxygen.
- The cofactor NADPH-P450 reductase
 - Transfers electron from NADPH to P450 enzyme.

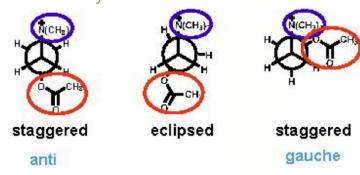
Membrane phospholipid

To reproduce the environment within the endoplasmic reticulum.

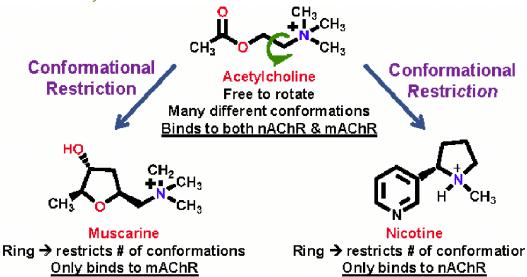

• Characteristic P450 Reactions:

 Drugs often form several metabolites because they contain more than one substituent that can be oxidised.

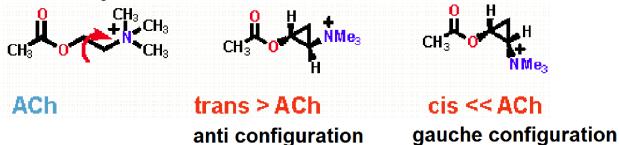
Pharmacokinetic Parameters


- After absorption, a drug builds up effective serum concentrations, but is also converted to forms that are more readily eliminated.
- The characteristics of these processes are described by a series of pharmacokinetic parameters.

Pharmacokinetic curve of a drug in the body


Pharmacokinetic Parameter	Definition
C _{max} (μg/mL)	 Peak plasma concentration (C_p) Usually following an oral dose Reflects drug disposition in terms of bioavailability and distribution
T _{max} (h)	Time taken to reach C _{max}
C_{min} (µg/mL)	 Trough C_p at the end of the dosing interval (before the next dose is given)
Clearance (L/h)	 Volume of plasma cleared of the drug per unit time Measure of efficiency of drug elimination Irreversible elimination from circulation One-way elimination (sweat, urine, etc.) and/or metabolic conversion At a given IV dose rate, clearance is the sole parameter determining steady state [drug]_{plasma}
Volume of distribution (L or L/kg)	 V_d = dose (g) / initial plasma concentration, C₀ (g/L) Relates amount of drug in body to [drug]_{plasma} Measure of extent of distribution The higher the V_d, the greater the proportion of drug that is distributed outside the blood stream V_d is not a real volume; it is the apparent volume into which the drug appears to distribute to achieve the measured C₀ Used to calculate loading dose (initial dose required to achieve a given C_p) Back-calculated from [drug]_{plasma} following given dose
Half-life (h)	 Time to halve drug amount in body Duration of action following single dose Determined by clearance (CL) and V_d t_{1/2} = 0.693 × V_d/CL Clearance follows first order kinetics (mostly exponential) C_t = C₀ × e^{-kt} Doubling the dose only increases duration by one half-life
AUC _{0-X} (μg·h/mL)	Area under concentration-time curve

Flexibility of ACh


- Staggered conformation much more energetically stable than eclipsed.
- Staggered gauche conformation more stable than staggered anti because of stabilising intramolecular interaction between negative dipole of ester group and positive guaternary nitrogen.
 - Pulls energy of gauche conformer below energy of anti conformer.

Selectivity of Muscarine and Nicotine

Muscarinic Agonists

- Rotational flexibility about C-C bond can be restricted by installing cyclopropane rings.
- Trans and cis isomers interconvert the position of the quaternary amine.
 - Trans (but not cis) isomer is a much more potent agonist than ACh at the mAChR.
 - Depends on whether N⁺Me₃ and OAc groups are closer to anti than gauche configurations.

S-A Relationships for Cholinergic Drugs 2

Acetylcholinesterase Inhibitors

- Compounds which inhibit the activity of AChE cause a build up in the concentration of ACh in the synaptic cleft, which can result in an overstimulation of the cholinergic receptors in the PNS and CNS.
- Acetylcholinesterase inhibitors have toxic and therapeutic uses.