Table of Contents

INTRODUCTION TO BUSINESS ANALYTICS	3
Key Definitions	3
Types of Variables	3
DATA VISUALISATION	4
Tables and Charts for Categorical Data	
Summary Table	
Bar Charts	
Pie Chart	4
Stem and Leaf Plots	
Tables and Charts for Numerical Data	
Relative Frequency Distributions and Percentage Distributions	
Cumulative Distributions	
Histogram	
Polygons	
NUMERICAL SUMMARIES	7
CENTRAL TENDENCY	7
Mean	
Median	
Mode	
VARIATION/SPREAD	
Quartiles	
Interquartile Range	
Turkey's 1.5 Step Rule (Outliers)	
LOCATION	
Range	
Sample Variance Formula	
Sample Standard Deviation	
Coefficient of Variation	
Z- Scores	
SHAPE	9
EMPIRICAL RULE	10
The CHEBYSEV RULE:	11
What Techniques Can We Use?	11
Cross-tabulations	
Contingency Tables	
Side-by-side Bar Charts	12
Scatter Diagrams and Time-Series Plots	
Scatter Diagrams Time-Series Plots	
Covariance and the coefficient of correlation	12
Covariance and the coefficient of correlation	
PROBABILITY AND EXPECTED VALUE	
Basic Probability Concepts	
Events and Sample Spaces	
Contingency Tables and Venn Diagrams	
Binomial Distribution	
POISSON DISTRIBUTION	
CONTINUOUS PROBABILITY DISTRIBUTIONS	20

THE STANDARDISED NORMAL DISTRIBUTION	20
GENERAL PROCEDURE FOR FINDING PROBABILITIES	21
TABLE LOOKUP OF A STANDARD NORMAL PROBABILITY	21
FINDING THE X VALUE FOR A KNOWN PROBABILITY	21
SAMPLING AND SAMPLING DISTRIBUTIONS	23
TYPES OF SAMPLES USED	
Non- Probability (non-random) Sampling	23
Random (Probability) Sampling	
Simple Random Sampling	
Systematic Sampling	
Stratified Sampling	
Cluster Sampling	
SURVEY ERRORS	
POINT ESTIMATION	
Sampling Error	
How to manage or estimate sample errors	
CENTRAL LIMIT THEOREMZ-Formula for sampling distribution of x̄	
Standard Error of the Sample Mean, x	
SAMPLING DISTRIBUTION OF p	
Standard Error of the Sample Proportion, p	
Z-Formula for Sampling Distribution of p	
CONFIDENCE INTERVALS	
Confidence Interval for μ (σ KNOWN)	
T Distribution	
Confidence Interval for P	
Different Sample Sizes	
Calculating Sample Size, n	
Sample Size Calculations	
Hypothesis Testing	36
The two key inferential tools	
The Null and Alternative Hypotheses	36
Errors in Hypothesis Tests	38
Level of Significance, α	39
SIX STEPS IN HYPOTHESIS TESTING	
The p-value approach to hypothesis testing	43
Simple Linear Regression	44
Types of Regression Models	44
Docidual Analysis	
Residual Analysis	
Standard Error of Estimate, Se (Used to measure variation)	
Using the regression equation for estimation or prediction	
Prediction vs Exploration	
rediction vs Exploration	47

INTRODUCTION TO BUSINESS ANALYTICS

Key Definitions

- **Statistics-** A branch of mathematics concerned with the collection and variation of data (collection, analysis, interpretation & presentation)
- Variables- Characteristics or attributes that can be expected to differ from one individual to another EG: Gender
- **Entity-** label
- **Data-** The observed values of Variables
- **Population** consists of all the members of a group about which you want to draw a conclusion Two factors need to be specified when defining a population:
 - 1. The **entity** (e.g. People or motor vehicles)
 - 2. The **boundary** (e.g. Registered to vote in NZ or registered in Victoria for road use)
- **Sample-** A sample is the proportion of the population
- **Census-** data collected on the whole population (rare)
- Parameter- Is a numerical measure that describes a characteristic of a population (Greek letters)
- Statistic- a numerical measure that describes a characteristic of a sample (Roman/English letters)
- **Descriptive Statistics-** Focus on collecting, summarizing & presenting a set of data to draw conclusions about a population (graph)
- Inferential Statistics- uses sample data to draw conclusions about a population
- Observational- no attempts made to control EG: Survey
- Random sampling is the best way to collect data.
- Data collected is not bias or ambiguous
- Primary Data- collected first hand
- Secondary Data- already available (someone else got it)
- Time Series Data- collected over time
- Cross-Sectional Data- collected at one fixed point in time
- Error- error made within probability

Types of Variables

- Categorical- worded answers EG: male or female, day of the week
 - Nominal- distinct groups, no ranking EG: favourite food, political party, type of fuel used (WEAK)
 - Ordinal- distinct groups, ranked EG: S, M, L- clothes, satisfaction- very satisfied, satisfied (STRONG)
- Numerical numerical responses EG height, weight, times seen
 - Discrete- whole numerical responses that arise from a counting process EG: 1,2,3
 - Continuous- any numerical responses by measuring process. EG: height, weight, time, length
 - Interval- fixed term measurement, no true zero, intervals are equal EG exam score, Celsius, shoe size (WEAK)
 - Ratio Scale- meaningful value, zero must be included EG: length, weight, age, salary (STRONG)

DATA VISUALISATION

Tables and Charts for Categorical Data

Summary Table

Gives the frequency, proportion or percentage of the data in each category

Type of device	2012 Shipments (in millions)	2012 Market Share	
Smart Phone	722.4	60.1%	
Tablet	128.3	10.7%	
Portable PC	202	16.8%	
Desktop PC	148.4	12.4%	
Total	1201.1	100%	

Bar Charts

2012 Market Share %

Pie Chart

Market Share 2011

Stem and Leaf Plots

Helpful to order large amounts of data

Stem unit: \$ | leaf unit: 10 cents

4 8 3 99 3 5 4 6 8 5 6 1 4 6 8 9

Tables and Charts for Numerical Data

Frequency Distributions

- Allow you to condense a set of data.
- Summary table for numerical data
- Select an appropriate number of classes and suitable class width
- \blacksquare Example: Class width = 49 / 10 = 4.9
- Construct the frequency distribution table by first establishing clearly defined **class boundaries** (upper and lower values used to define classes for numerical data)
- The center of each class is called the **class mid-point**

Relative Frequency Distributions and Percentage Distributions

- Instead of the frequency, knowing the percentage of each of the data may be more useful
- A **relative frequency distribution** is obtained by dividing the frequency in each class by the total number of values. (EG: 3/52)
- From this a **percentage distribution** can be obtained by multiplying each relative frequency by 100%. (EG: 3/52x100)

Cumulative Distributions

A **cumulative percentage distribution** gives the percentage of values that are less than a certain value. Percentage smallest to largest, just add as you go down.

Weekly Sales	Count	Percentage	Cum. Percentage
0 kg < 200 kg	3	5.8%	5.8%
200 kg to < 400 kg	10	19.2%	25%
400 kg < 600 kg	16	30.8%	55.8%
600 kg < 800 kg	16	30.8%	86.6%
800 kg < 1000 kg	6	11.5%	98.1%
1000 kg < 1200 kg	1	1.9%	100%
Total		100%	

Histogram

A grouped frequency, relative frequency or percentage distribution can be graphically represented by a **histogram**.

 Ogive- place dot on midpoint of class on histogram & connect lines

Polygons

- When comparing two or more sets of data we can construct polygons on the same set of axes.
- Percentage Polygon- plotting % for each class above the midpoint & join lines

Exercise - 2 Type of graph

Histogram - Continuous Numerical data. Good for overview of distribution of data

Column Chart - Discrete/Categorical data. Good for overview of distribution of data

Line Chart – Time series data. Good for identifying trends/patterns over time

Box plot – Numerical data. Good for a quick overview of key features of data.