Lecture notes for Neuroscience

Lecture 1: History *

Ancient Egyptians: Idea of flow (too much or too little) → centre of flow was the heart → soul is from the heart

Hippocrates: everything comes from the brain (emotion and thoughts)

<u>Galen:</u> accepted brain as the seat intellect (Hippocrates) but also with flow/humers (instinct functions – liver, passion – heart)

<u>Aristotles</u>: cardio-centric view of mind, opposed to Hippocrates → centred beings in the heart(warmth), disregarded the brain

Descarte's - Thought nerves and the brain was a pump of liquid, mechanisms rather than spiritual explanations

<u>Prof. paul broca</u>: Bits of the nervous system that is associated with functions \rightarrow realised that left frontal lobe of brain was responsible for speech \rightarrow "Tan" (patient)

What does nervous system do?

- Reveal universe(sensory) → brain provides interpretation ... **exteroception** (detecting the outside world)
- Provide capacity for action
- Control homeostatic regulation

Lecture 2: How we can study it?*

Neuroscience – multi-disciplinary science united by its subject – the nervous system

- CNS: brain and spine PNS: all nerves and clusters of neurons
- White matter: axon and fatty sheath Grey matter: cell bodies
- Most neurons are multipolar, 200 different types

<u>Luigi Galvani</u> – Italian doctor → demonstrate that nerves convey electricity

- Experiments with frogs
- Simple unit of behaviour (reflexes)

Lecture 3: anatomy revision

Para-sagittal - right next to midline

- Neuro-axis curves around thus transverse section can be vertical and horizontal

Ventricles

- Ventricles follow the C- shape of the brain
- 3rd and lateral ventricle is connected
- 3rd ventricle is a thin blade of fluid
- Apears black on CT scan

Main divisions of the CNS

- Corpus collosum bridges both sides
- Sub cortical structures include: basal ganglia, amygdala, hippocampus, thalamus
- Cerebrum
 - o Lobes: frontal, parietal, occipital, temporal
 - o Sylvian fissue
 - o Central sulcus- defining line between frontal and parietal
 - Forward of it- motor cortex then planning
 - Backwards of it: sensory and vision
- Diencephalon (Hypothalamus and thalamus)

- Basal ganglia
 - o C shape
 - Main components: striatum (caudate nucleus and putamen), globus pallidus, substantia nigra, nucleus accumbens and subthalamic nucleus
- Hippocampus
 - C shape, bilateral
 - Memory
- Cerebellum
 - Also has a "deep cerebellar nuclei" inside and two halves
- Brainstem
 - Medulla, pons and midbrain
 - o Pons: bridge that connects to the cerebellum (cut off in pic)
- Spinal cord

Afferent fibres: sensory, to the spine, red, dorsal, have cell bodies in ganglia

Efferent fibres: motor, away from spine, blue, ventral, cell

bodies in the spine

Cellular components of neural tissue

- **Neurons**
 - Nerves- clusters of axons in the periphery
 - Epineurium external connective tissue
 - Perineurium- connective tissue \circ
 - Endoneurium- thin protein coat 0
- Microglia
 - Innate immune cells
 - Macrophages in CNS
 - Ramified (resting) → ameboid (active)
- Macroglia
 - Oligodendrocytes (CNS)- insulation, white matter
 - o Schwann cells (PNS) insulation
 - Astroglia
 - Recycle and synthesise neurotransmitters
 - Maintain ECF (ionic composition)
 - Maintain protective environment
 - As many astrocytes as there are neurons

Neuronal function

- Graded and action potentials
- Synapses (2 types)
 - Electrical synapses rare in mammals
 - Only excite post synaptic cells
 - Passive (no energy)
 - Fast (no latency from diffusion and E dependent processes)
 - Good for synchronisation
 - Chemical synapses
 - Variety (>100 neurotransmitters that can have different effects)
 - Energy dependent (synthesis, release, reuptake)
 - Slow (from E dependent processes)
- Neurotransmission: complex molecular synthesis and transport mechanisms

- The bigger the current the more action potentials
- Ion transporters and channels(Na and K)
- Electrochemical equilibrium

10 mM KCl 1 mM KCl 10 mM KCl 1 mM KCl

- Gradient is propagated across the cell
- Myelin sheath makes the signal faster because there are only Aps happening at nodes
- Neurotransmitter synthesis → made in cells body, travel through axon to dendrite

Lecture 4: Development of the Nervous System*

- Trilaminar embryo: flat 3 layers disc of cells (endoderm, mesoderm, ectoderm)
 - Nervous system appears in ectoderm via Neuralation

Neuralation

- Neural tube first appears as patch of specialised cells (1 cell thick) –
 Neuroepithelium (stem cells of NS)
- Neural plate forms a crease which invaginates (fold)
- Forms neural tube
 - 1st structure to identify as NS
 - Forms brain and spinal cord
 - Hollow
 - Formation has a rostral to caudal gradient (rostral is older)
- Neural tube breaks free of ectoderm

Neural fold closure

- 2 3 1
- Order in which the grooves close
 - Anacephaly no head, point 2 doesn't close → brain doesn't form
- Spina bifida- looks like a blister, fail to shut region 5, thin film of epithelium

Segmentation of Neural tube

- Rostral end of tube swells [vesiculation]→3
 vesicles
 - o Prosencephalon (forebrain)
 - Splits further to form telencephalon(cortex and basal ganglia) and diencephalon
 - Retinae form as optic vesicles
 - Mesencephalon (Midbrain)
 - Rhombencephalon (hindbrain)
 - Into 7 segments
 - Then splits into metencephalon and myelencephalon (pons and medulla).
 - o The rest is spinal cord
- Note: optic vesicles (retina)
- The brain then forms a series of thin walled bubbles around the fluid filled cavity of the brain

distinct

Neural crest

- Cells at the top of neural tube form neural crest which migrate away
- Establish PNS outside brain and spinal cord
 - o PNS
 - Dorsal root ganglia
 - Sympathetic and parasympathetic ganglia
 - Enteric ganglia (gut)
 - All glial cells in PNA (schwann cells)
 - Melanocytes (pigment)
 - o Muscle, cartilage and bone of face, pharynx
 - Dentine(part of teeth)

