Contents

Cells	2
Basic Genetic Mechanisms	2
Control of Gene Expression	e
Recombinant DNA Technology	8
Intracellular Compartments	10
Applied Molecular Biology	11
Tissue Maintenance	13
Cancer	15
Cellular Mechanisms in Development	17
Practicals	2 1

Cells

Mitosis

Interphase

G₁ Phase

- Increase in cytoplasm and cell size
- Mitochondria replicate
- Protein synthesis

G₀ Phase

- 'Within' G₁ Phase
- Phase that allows the cell to exit the cycle permanently or temporarily

S Phase

DNA replicates- the cell goes from n to 2n

G₂ Phase

Increase in cytoplasm and cell size

M Phase

Prophase

- Chromosomes condense
- Kinetochores form at the centromere
- Spindle forms

Pro-Metaphase

- Nuclear envelope disappears
- Spindle microtubules attach to the kinetochores

G₂ Checkpoint Cell size, DNA duplicated M G₀ Resting Phase G₁ Checkpoint

Cell size, DNA, environment

Metaphase

Chromosomes align at the metaphase plate

Anaphase

- Centromere splits, and chromosomes are separated by microtubules
- Cell elongates

Telophase

- Nuclear envelope reforms
- Contractile ring, composed of actin and myosin filaments, forms

Cytokinesis

- Starts in anaphase
- Contractile ring pinches the cell in two
- · Cellular components divide

Meiosis

Consists of Meiosis I and Meiosis II, which follow identical steps to mitosis except for...

Meiosis I

- Prophase I
 - ❖ Homologous chromosomes form bivalents Synaptonemal Complex synapses them
 - Crossing over occurs
 - Exchange of genetic information
 - Produces variation among gametes
- Metaphase I random alignment and assortment of homologous chromosomes
- Anaphase I homologous chromosomes separate

Meiosis II

- DNA doesn't duplicate (no S phase)
- Metaphase II random alignment and assortment of sister chromatids
- Anaphase II sister chromatids separate

Overall Differences

Mitosis

- 1 division
- Produces two diploid (2n), genetically identical daughter cells
- Role growth and repair of tissues

Meiosis

- 2 divisions
- Produces four haploid (n), non-identical daughter cells
- Role gamete produce

The Cell Cycle

Cyclin-Dependent Kinases (CDK's) – protein kinases that are active when bound to cyclical expressed cyclins

1) Interphase

- M-cyclin concentration increases
- M-cyclin binds to CDK's, forming M-CDK
- M-CDK activates proteins for mitosis

2) Mitosis

- M-CDK synthesis
- Extracellular signals must trigger G₁ cyclins (G₁–CDK's), or the cell will enter G₀

3) Termination

- M-CDK's activate APC, triggering cyclin proteolysis (degradation)
- M-cyclin concentration decreases
- M-cyclin no longer binds to CDK's

Cell Senescence

- Cell Senescence the normal aging of cells
- Due to...
 - An accumulation of lipofuscin (waste)
 - Decreased homogeneity
 - Shorter telomeres

Apoptosis

- Apoptosis programmed cell death
- Steps
 - 1) Cell shrinks
 - 2) Cellular components disappear
 - 3) Cell surface alters to initiate phagocytosis (cell 'eating')
- Occurs...
 - During development
 - Due to a lack of survival factors

Basic Genetic Mechanisms

Transcription

Transcription – copying one DNA strand into mRNA by RNA Polymerase

Steps

1) RNA Polymerase

- Binds upstream from the promotor
- 'Unzips' DNA in a 5' to 3' direction
- Inactive until...
 - Eukaryotes transcription factors and / or regulatory proteins bind
 - Prokaryotes the sigma subunit binds
- 2) Ribonucleotides (Adenosine, Uracil, Cytosine, Guanine) bind to form pre-mRNA

3) Pre-mRNA Processing

- <u>Capping</u> addition of methyl-guanosine to the 5' end of pre-mRNA to aid stability and bind to the cytoplasmic ribosome
- Polyadenylation addition of A ribonucleotides to the 3' end of pre-mRNA
- Splicing spliceosome (RNA + snRNPS) removes introns and leaves exons to form the final mRNA molecule

Types of RNA

- mRNA involved in protein synthesis
- MicroRNA
- Non-coding RNA thought to be involved in regulatory mechanisms
- **rRNA** involved in protein synthesis
- **tRNA** involved in protein synthesis

