
ENG1003 Mobile Apps
Web application components

An individual web page is made up of multiple files:
> HTML file describing the content and structure of the page
> CSS files that describe the presentation or style of page elements
> JavaScript files that specify dynamic, interactive behaviour
> Media files, e.g., images, audio or video

Internet is based on request/response model. Web addresses send requests to web
servers who send back HTML for that page (address). Web browsers receive HTML
and interpret it.

The browser uses HTML to construct a representation of the page known as DOM.
This DOM holds info about the layout/style of everything on the web page, which is
then used to render (display) the page for the user.

A file linked to an HTML page is a Cascading Style Sheet (CSS). This contains style
rules that select subsets of elements within the HTML page and imposes
presentational styles on their display.

Another file linked to an HTML page is a JavaScript file. This contains code that
responds to DOM events and then manipulates the DOM to change the displayed
page. In short JavaScript brings interactivity to the web page. Both CSS and
JavaScript can also be embedded in an HTML document rather than be in a linked
external file.

- HyperText Markup Language (HTML)
The content and structure of web sites is expressed in a format called HTML. HTML
marks-up the content of the page to specify structure and semantic meaning

HTML specifies start/end tags that enclose content. In the example, is a start
tag and is the corresponding end tag. The start/end tag and its content is
called an element. Here, bold is a bold element that tell the browser that
the content “bold” should be displayed bold

Commented [tr1]: HTML specifies CSS, JavaScript or
media files, your browser makes further requests to the
web server(s) to obtain these

Commented [tr2]: Document Object Model (DOM)

Commented [tr3]: E.g. a button was clicked

- Minimal Web App E.g
Line 2 of JavaScript code, method
getElementById() in invoked on
document object. This method returns
a reference to the DOM node
associated w/ HTML element w/ an id
that matches its parameter
(“outputArea”).

Can use this reference to set/get
properties of DOM node object and
invoke methods on it.

- Launching web apps on a phone of tablet
There are several special HTML instructions that can be added to a web page to
inform a web browser that the page is intended to be used as a web app.

The instructions required for both Android and iOS are listed below. The app icon
should be a 196×196 PNG named appicon.png. These tags should be placed in
the <head> tag
of the web page.

- Web Components of Native Apps

Commented [tr32]: Here is a minimal example of a
JavaScript app that can run in a web browser. It
consists of two files app.html and code.js.

outputAreaRef changes displayed content on page
(console.log just outputs private info in developer tools)

Commented [tr33]: These affect the corresponding
HTML element. In this case the HTML element is an
empty div element. Setting a DOM
node’s innerHTML property sets HTML content for that
element as if it had been originally specified between
the element’s start and end tags. In this case we’ve just
inserted plain text but plain text is valid HTML. I could
have inserted any String that contained a valid HTML
fragment.

Commented [tr34]: These instructions specify an icon
for the app and allow the app to be added to the home
screen of the device. When the user taps the app icon,
the web page will be displayed full-screen so that it no
longer looks as though it is running in a web browser.

Functions

Function is a named code block that can be called (executed) any time to perform a
specific task. Functions can be parameterised (passed values to change their
behaviour) and may return a value.

- Why use functions?
Code of a task can be placed in a function and called (executed) anywhere.
// The fnc provides single point of guaranteed consistent update.
// If the fnc is parameterised each call does not have to be identical, but can

be given different parameter values to get different behaviour
// Way of protecting variables from changing/clashing (encapsulates local variables

as they arnt seen by anything else)

- Function that do not return values
Syntax for defining and
calling a function, and the
execution sequence resulting
from a call to such a
function:

When called, arguments are evaluated to single value. These values initialise the
corresponding parameter of each argument. Then body of function is executed
until a return statement or function closing brace(}). At this point execution
continues in calling code w/ the statement after the function call statement

Below the Function performs an addition and date stamps it. Formatted result is
displayed in an alert pop-up dialogue. Function declaration and 2 calls to the
function are shown in E.g.

Commented [tr44]: Arguments = Literal,
variable, expression
Parameters = variable name

Arguments and parameters are matched by
having the same position in the respective
argument and parameter lists of the function call
and declaration.

Commented [tr45]: In this example, the function
is named addAndTimeStamp. It has two
parameters, number1 and number2.The block
following line 6 is the body of the function.

The code within the function will NOT execute
unless the function is called, which it is here
(twice) by code outside the function.

- First Class Functions
JavaScript fnc’s are first class which means they can be assigned to a variable, and
like any variable can be passes as a parameter to a fnc.

E.g.

E.g.

Commented [tr54]: A variable that references a
fnc (which is another object) can be used to call
the fnc by following the variable name w/
parentheses enclosing an argument (list)

RHS of assignment statement for function2 is an
anonymous fnc expression

When passing a fnc as a parameter you
can pass a reference to the function
(e.g. function2) or just define the fnc
anonymously in place of the parameter

Functions can be passed as parameters to other
functions

Then called within these other functions

i.e you create a fnc then give that fnc as a
argument to another fnc, then you can call that
w/in the fnc

Storing data persistently
Sandboxed; documents are isolated from rest of the platform they run on for
security reasons i.e browsers don’t have access to you computers file system to
store/retrieve documents

- Local Storage
HTML and modern browsers support a stage API called Local storage. Its
limitations and characteristics include;

Browsers can allocate upto 5MB of sandboxed data per web domain

Only web apps. from same domain can access their shared Local Storage data

Unlike cookies, local Storage data is never transferred to a server
Only supports saving key/value String pairs

Object data cannot be stored in Local Storage directly, it must first be converted to a String

To use Local Storage, first check your browser supports is:

You can store a String value together with its String key in local storage by
calling the setItem() method of the localStorage object:

You can retrieve String value from Local Storage by calling getItem() method
and giving it as an argument the String key of the item you want to retrieve:

You can clear a key/value pair from Local Storage by calling removeItem() method
and giving appropriate String key as argument:
Or,
use localStorage w/ dot-notation like a normal object, so long as the key fits the
variable naming requirement. E.g.

NOTE* an object called sessionStorage with the same interface (i.e., methods)
as localStorage. Data in sessionStorage persists across page reloads, but only until
the browser is next closed, and so cannot be used for permanent storage.

What about Object Data?

Commented [tr64]: LOCAL STORAGE
LS allows us to store & retrieve strings
LS key/value store (when you have key you can
simply find value that corresponds to key)
When we save; need info (string) and key to
save it
To retrieve we just need key

Commented [tr65]: Cookies; website can keep info
based on browser instance that was accessing
website

But cookies expire, time limited and disappear
after time

Can only store small amount of text

Commented [tr66]: If the app. has been designed
following the OO paradigm most of our
persistent data will reside in JavaScript objects. .
How can we save this data persistently? In the
case of Local Storage we must convert these
objects to Strings bcas that is the only data
format Local Storage accepts. These Strings
must encode the data and the structure of the
objects so that they can be retrieved and
reconstituted later. In general the process of
converting object data to a format that can be
stored or transmitted (commonly a String) is
called serialisation or stringifying and the reverse
process is called de-serialisation orparsing.
As you can imagine stringifying objects to strings
and and parsing these strings back to objects
are common tasks as web application data is
stored and retrieved.

Software Engineering Processes

- What is Software Engineering?
Software engineering is the design, development and maintenance of software
via the application of engineering principles and practices.

Unconstrained by Physical Laws
Constraint imposed by environment (gravity). Software has a blank slate where gravity needs

to be programme into system giving flexibility.
Many ways to achieve same aim

Many ways to solve the same problem, but simple problems have a body of knowledge to do it,

certain properties can achieve this quickly.
Solutions can be correct and incorrect; there are generally better and worse approaches

for different problems
Complexity

Software has many logical paths that make it hard to reason about behaviour

Code can have unexpected interactions between components (using APIs) that give unexpected

behaviour. Consider amount of choice for road networks (impossible to test every combination
of choices)

Same thing can happen to software

Code is not just individual choices, you carry states (values of variables) as you execute

code you modify state.
Software is living

Software is living (rarely finished) keeps evolving; don’t just plan for initial purpose, plan and
design a foundation you can build on

Reliability & stability
Since software is written by humans, its rarely free from errors, bugs at all levels (i.e in

Materials science you can depend on the properties of your materials).

- Software Development Methodologies
Agile Development
Lightweight interactive methodology in practice today
Client is involved in development process to direct evolution of the software.

Requirements involves figuring out what needs to be done

Design deals w/ how to get things done

Implementation involves writing code to do the task

Verification deals w/ quality assurances (testing something)

Waterfall Model
Traditional approach involving following stages, each completed before progressing

This style follows a well-defined linear process, requirements are clear and less
chance of changes.
Good for large (and expensive) or mission-critical projects.

.

PROS CONS
Delivers something useful immediately

(code, documentation)

Requires involvement (time and interest) of client,

which is not always possible

Requirements can be adapted and not nailed

down at beginning

Since requirements are refined each iteration, they

can become overly ambitious (scope creep)

Software Engineering Processes
Requirements give formal description of what we are working towards, it’s
the first step for any software project.

Besides just finding what features are needed, requirements determine
correctness and completeness of software (tests originate from requirements)

- Requirements Elicitation (drawing out requirements)
Requirements are a description of a piece of functionality
When collecting requirements there can be problems ie. The client has a different
technical knowledge and might not know exactly what they want

Waterfall
Requirements are collected at beginning and set before starting design
the danger w/ this is if requirements can change during development

Agile
Requirements are gradually done (iterated), client gains better
understanding of project  client understands what’s possible

- Capturing Requirements in Agile
User stories
User stories are short concise description of actions a user wants w/ a system
As a <persona>, I want <action> [so that <outcome>]
User story must capture; need/effect, components/people involved and motivation
for the feature (should be short and phrased in clients language)

>User stories are phrased in terms of need  easy to write tests for them

A way to produce/check user stories is INVEST
Independent; self-contained
Negotiable; easily revised/replaced
Valuable; beneficial to end users
Estimable;
Small; small enough to be scheduled independently
Testable; verity it’s been implements satisfactorily

Commented [tr73]: Where do software
requirements come from?

Clients
Government; legislation laws you have to obey
Security; storage of credit card no. (can

overlap w/ legislation) follow standards not to
store card details in entirety

Hardware; software runs on hardware, so must
fit limitations/features of hardware

Software; Java can restricts was can be
accomplished

Competitive pressure; competitors are doing
something so you must do the same thing to
be on the same level

Standards; source of requirements

Commented [tr74]: Is a user stories good/well
written? Check INVEST (user stories are tasks or
bugs to fix, small pieces we can assign to
someone)

- Activity diagram
Used to document program flow (i.e flow charts for software)
Shows how components interacting simultaneously

- Prototyping and UI design
Another aspect of design is User Interface (UI) and User Experience (UX)

To plan the layout and behaviour of the user interface, we use prototyping
simple representation to demonstrate interaction
>Useful for communicating ideas as mock ups provide mechanisms for testing
feasibility of ideas
>Allows users/clients to react to design and suggest changes

Wireframing
Sketches of user interfaces showing mock data
Skeletal view like a building frame; gives idea of layout

>Give sense of user interface before code is written
>Wire frame sketches are made to look scratchy so clients are more willing to
critique

Storyboards
Sequence of stills used for simulating interaction (may be wireframe sketches)

Serve to show progression through a task,
Gives understanding of navigation and flow of an app, can be discussed w/ clients

and iterated between designers and engineers

- Approaches to Testing
Black box testing
Involves testing code while knowing what it is supposed to do, but not how it does it.

This approach tests the behaviour of code

For each requirement, we need to know what the right behaviour of the software
 we consult an oracles (such as a software specification determined during requirements

analysis) to determine the correct behaviour.

This sort of testing is done without seeing source code and considers the software component being
tested as a black box that we can’t see inside. Black box testing involves giving the black box a set
of input and verifying that it produces a particular set of output.

White box testing/clear box
Code-based approach where tests are written knowing how the code being tested works

Such testing might test individual code paths, ranges of variables or data types used.

- Levels of testing
Software testing can happen at different levels
Unit testing
Test small units (methods, fncs etc.) of code

Each unit test generally tests a function, or a method of a class in the case of O-O code

Usually tested while implementing that part of code
Integration Testing
This testing checks behaviour of components vs. documentation

Bugs may emerge as a result of interaction  It’s these bugs that integration testing targets

Units need to interact and test that is works
Systems Testing
Testing the complete application/overall system in order to check that it satisfies requirements

Such tests might be created from user stories, or activity diagrams created during design

As well as checking for the correct behaviour, these test also check the application doesn’t do

anything unwanted, like crash or lose user data

Commented [tr78]: To use a car metaphor, black
box testing would be like testing a car by sitting
inside it, without ever seeing the engine or other
mechanical components.

Commented [tr79]: i.e software specifications,
existing algorithm or previous versions of code

Commented [tr80]: An analogy for white box
testing would be testing a car while being able to
see under the car and bonnet in order to
determine the components being used and how
they are connected.

Commented [tr81]: Imagine you have a data layer
of a mobile app that communicates with Twitter
and stores the local version of a set of
information from the Twitter website. You could
have integration tests that test this code by
creating code that returns sample data in the
same format as the Twitter web service.

- Code Complexity
Complexity analysis looks at how optimal algorithms are, particularly how much time, memory

or other resources they require
Complexity depends on the size of the input

e.g. the same algorithm takes longer to sort a million items when compared to ten items

Hence complexity can be represented as a function of input size n.

When considering execution time, time complexity is expressed as O(..)

Deals w/ the fnc bounding the run time
Unconcerned w/ constant & unchanging factors which are unrelated to input size

i.e complexity gives us an idea of how slow an algorithm gets proportional to the input

Some examples of tasks we perform in code and the time complexities they fit into:

Constant time: O(1)
Direct access to an element of an array e.g. array[15] is constant regardless of length
Bcas arrays allow position of a value to be accessed from its index regardless of size of array

Any code that runs in a similar time regardless of size = constant

Logarithmic time: O(log(n))
An e.g. is binary search

Finds position of a value is an array, it works by splitting the search space in half each iteration

Selects middle of array, if middle === value algorithm stops
if middle > value, algorithm repeats w/ first half of array etc.

In this way binary search requires 9 steps for an array of 500, or roughly log2(500)

So an array of size n, steps needed for binary search = log2(n)
Linear time: O(n)

Linear time algorithms take time directly proportional to the size of the input

To find the lowest/highest value of an array is a linear time operation
You look at each element once, so its dependant on size of array

Quadratic time: O(n^2)
The selectionSort() fnc runs in quadratic time.

Takes time proportional to the square of the input size

selectionSort() outer loop looks at every element in array, then inner loop looks at all remaining
 n*n operation, hence why its slower than Array.sort()

Commented [tr84]: Algorithms that take time to
run proportional to the logarithm of the input
size are said to run in logarithmic time.

- Good Design Principles
Design principles are guides/rules to abide by when designing mobile interfaces
E.g.
Donald Normans Principle
Proposed a few important principles of user-centred design

1. Visibility
Relevant elements should be obvious what they are for even before user initiates it

2. Affordance
Appearance of objects should indicate how it is used, e.g., buttons “invite” pressing
Interface hints at functionality

3. Constraints
Limitations of the possible actions of an object, limiting errors

e.g swipe to unlock prevents unlocking by mistake
4. Cognitive Aids

Offering user additional help with state of an element e.g fuel gauge arrow indicates the

side of the pump if you forget
5. Transfer effects

Benefit from making things in a way similar to what the user has seen, utilizing user

experience
6. Natural Mapping

Can we make computer interfaces similar to something the user has been seen, giving
the user an idea of how to interact w/ an interface before they even try

or,
Ben Schniederman’s 8 Golden Rules of Interface Design
1. Strive for Consistency

Consistent interfaces make it easier to learn and use, utilizing user experience of an OS
2. Cater to universal usability

Cater to the needs of a wide range of users
3. Offer informative feedback

Gives users feedback on actions e.g sounds, highlights, lets user know action happened
4. Design dialog to yield closure

Provide feedback on the end of a transaction
5. Prevent errors

Detect errors and correct them. Dynamic system
6. Permit easy reversal of actions

Offer an easy way out, offer an undo e.g. quit to home screen
7. Support Internal locus of control

Allow users to initiate actions, giving a sense of control
Makes user feel in control, interface need to corresponds to user action

8. Reduce short term memory load
Don’t make tasks complex, hint to the user what is needed

make the interface remember

Commented [tr90]: https://www.alexandriarepository.org
/reader/eng1003/86923

Commented [tr91]: Idea of consistency,

