2401 Sample

Saturday, 18 June 2016 3:23 AM

TABLE OF CONTENTS

Jnit I – Cellular Foundations of Medical Science	1
Lecture 1: The Basics of Cell Structure and Function	1
Lecture 2: Nucleus and Cytoplasmic Organelles	2
Practical 1: Microscopy and Histology Techniques	4
Lecture 3: Histology of Epithelial Tissue	5
Lecture 4: Cell Polarity, Motility and Secretion	7
Practical 2: Ultrastructure of Human Cells	11
Lecture 5: Cell Membrane Specializations	13
Lecture 6: The Four Basic Tissue Types	15
Practical 3: Epithelial Tissue, & Structure and Function of the Plasma Membrane	19
Lecture 7: The Cell Cycle and Apoptosis	21
Lecture 8: Introduction to Cell Signalling	23
Lecture 9: Cellular Metabolism	26
Lecture 10: Principles of Energy Balance and Fuel Oxidation	28
Lecture 11: Overview of Fatty Acid and Glucose Oxidation	29
Practical 4 + 5: Glucose Oxidation Test and Tutorial	31
Lecture 12: Drug Classification, Definition and Actions	33
Lecture 13: Drug Targets and Measuring Drug Action	35
Lecture 14: Responses to Agonists	37
Lecture 15: Responses to Antagonists	41
Lecture 16: Prokaryotic Structure – General Features	43
Lecture 17: Prokaryotic Structure – Specific Features	45
Lecture 18: Bacterial Identification and Classification	48
Lecture 19: Eukaryotes – Fungi and Protists.	51
Lecture 20: What is a virus?	53
Lecture 21: Basic shape of drugs	55
Lecture 22: Modulation of activity	57
Lecture 23: Physiochemical properties of drugs, elements of design	59
Lecture 24: Cell differentiation – embryology	
Lecture 25: Cell differentiation – gene expression	64

BMED2401	The University of Sydney	2016

Unit I – Cellular Foundations of Medical Science

Lecture 1: The Basics of Cell Structure and Function

Lecture Summary

 Methods for light and electron microscopy by histologists; Four basic tissue types; Overview of structure of human cells <u>Learning Outcomes</u>

1.1 Define the histological terms described

Histology, study of the body cells and tissues + how tissues are organised into organs Pathology, study of diseased tissue

1.2 Summarise the basic steps of tissue preparation

The basic steps of tissue preparation are as follows:

1. Specimen Acquisition - fresh tissue is acquired in this step

Fixation – preserves structure

Easier handling, prevent degradation, other internal factors: autolysis (attack by

own enzymes), osmotic alterations (sudden movement of soluble ions), and ischemia (blood loss, thus O2 & nutrients).

- 3. Dehydration removes water
- 4. Embedding stiffen to cut
- 5. Section improves resolution, completed using microtome and sharp glass
- Stain produces contrast

Haematoxylin = blue/ nucleus; Eosin = pink-purple/ cytoplasm;

Masson's Trichrome Stain = red/ muscle and keratin, blue-green/ collagen and bone, pink/ cytoplasm, black/ cell nuclei

1.3 Explain the differences between a light and electron microscope image

	Light	Electron
Resolving Power	0.2 μm	3 nm
Maximum Magnification (eye)	2,000x	500,000x
Section Thickness	$1 \mu m - 100 \mu m (5 \mu m)$	0.025 μm

Typical magnification: 6,000x few cells, 12,000x one cell, 22,000x cell + organelles, 200,000x organelles

The resolving power, i.e. the ability to distinguish between two points of space in a microscope, differs for light and electron microscopes at 0.2 μ m and 3 nm, respectively. The maximum magnification in regards to the human eye goes up to 2,000x for light versus 500,000x for electron (250-fold increase). Thicker sections are less resolved. Light usually have 1 μ m – 100 μ m sections but typically 5 μ m; whereas, electron deals with 0.025 μ m sections (200-fold smaller).

1.4 Know the classification parameters for the 4 basic tissue types

Tissue is an orderly arrangement and distinctive pattern of cells that co-operatively performs a function. Based on Morphology (i.e. appearance)

1.	Epithelial – free surface, continuous lining, repairs &				
	renews, closely apposed cells junctions, single or multiple				
	layers, basement membrane, underlying CT				
	Simple/ Stratified: Sauamous/ Cuboidal/ Columnar				

 Connective – support tissue, morphologically diverse, ground substance, fibroblast, fibres (elastin, collagen, etc.)

FESS

Fix Embed Section Stain

=preserve, stiffen, resolution, contrast

Loose/ Dense; Regular (tendon)/ Irregular (dermis)

Based on Function

 Muscular – muscle cell fibres, elongated, orientated, arranged in bundles Smooth/ Striated; Skeletal/ Cardiac Nervous – PNS: nerve/ ganglia; CNS; white/ grey = cell bodies, axons, dendrites

1.5 Describe the plasma membrane

Lipid-bilayer structure surrounding cell, 9 nm wide, selectively permeable, dynamic/ fluid boundary, lipids & proteins, pumps, channels, receptors → TEM shows proteins/ hydrophilic heads, hydrophobic tails, and the intracellular space, *aka*. Rail tracks Includes, cisternae (flat sheets of membrane e.g. ER), and cristae (folds of membrane e.g. mitochondria)

1.6 Explain how and why cells are compartmentalised

CELLULAR COMPARTMENTALISATION + acquiring/expenditure of energy occur → to maintain order (Entropy). [Molecular chaos – cytoplasm crowded by organelles, inclusions small insoluble particles calcium crystals glycogen lipid droplet, and cytosol, water salt organic molecule soluble protein cytoskeletal protein filaments]

- Ensures correctness of molecule placement and timing
- Different compartments separated but functions co-operatively
- Cells contain large amounts of membrane to create compartments

Pg. 1 of 66 (J.P.)

Lecture 2: Nucleus and Cytoplasmic Organelles

Lecture Summary

- Structure of the nucleus and nuclear components, and of membranous and non-membranous organelles
- Relation of structure to physiological function in human cells

Learning Outcomes

2.1 Know the structure of the nucleus, chromatin and nucleolus

Nucleus of non-dividing interphase cells contain ${\bf chromatin}$, DNA + HISTONES

- Euchromatin = DNA wraps around histones forming <u>nucleosomes</u> (extended, active, pale)
- Heterochromatin = multiple nucleosomes wrap to form a 30 nm chromatin fibre (condensed, inactive, dark)
 - Close to periphery, fibres bundle together to form chromosomes

Nucleus of metaphase cells (mitosis) has visible chromosomes

2.2 Compare and contrast the structure to the physiological function of the cell; know the structure of the membranous and non-membranous organelles; apply your knowledge of structure to the function of the organelle

	Structure	Function
Nucleolus	No membrane	Site of rRNA synthesis;
	~2 µm diameter, spherical, 1+ in nucleus	Ribosomal assembly;
	(usually undistinguishable from chromatin)	rRNA DNA contained;
Nuclear pore	70 nm pore with thin diaphragm where nuclear envelope membranes merge	
Centrioles	Close to nucleus; Paired cylinders of 9 microtubule triplets	MTOC microtubule organising centre; Control microtubule number, polarity, direction and orientation; Organisation during interphase, cell cycle;
Cytoskeleton	(internal framework of filaments and tubules)	Structural support; Intracellular movement of organelles/ metabolites; Extracellular transport;
Microtubules	Tubulin protein; Hollow cylinders; 22 nm diameter, 5 nm thick walls;	Intracellular transport; Cell shape;
	Dynamic instability (continually forming &	Cilia movement;
	disassembling, $t_{1/2} = minutes$);	Chromosome arrangement;
Microfilaments	Actin; Flexible;	Microvilli structure:
Meromanients	Helical array; 6 nm diameter;	Extension of cell processes;
Intermediate filaments	8 nm diameter; Heterogenous;	Mechanical strength and resistance to extracellular forces;
maments	Tree-rogenous,	101003,
Mitochondria	Outer membrane/ Intermembrane space/	ATP generation via oxidative phosphorylation,
	Inner membrane (cristae, elementary particles)	citric acid cycle, b-oxidation of fatty acids;
	Matrix (enzymes, Ca ²⁺)	Initiate apoptosis via release of cytochrome c
rER	Cisternae + ribosomes	Protein synthesis for secretion;
		Chemical modifications;
		Membrane lipid synthesis;
sER	Cisternae, (anastomosing tubules with many	Lipid, glycogen, steroid metabolism;
	enzymes)	Synthesise and secrete steroids;
	Glycogen, (inclusions)	Isolates Ca ²⁺ ;
		Detoxification e.g. hepatocytes;
		Membrane formation;
Golgi apparatus	Crescent shape of stacked, flattened membrane	Post-translational modification:
811	bound cisternae with small vesicles budding off	Sorting and packaging proteins;
Secretory	Membrane bound	Contain protein to be exocytosed;
vesicles		Lysosome biogenesis;
Endosomes	Membrane bound	Internalization of extracellular material;
	Formed during endocytosis, via Golgi	Recycling of membranes;
	, , , , , , , , , , , , , , , , , , , ,	Lysosome biogenesis;
Lysosomes	Membrane bound	Digestive enzymes (proteases, nucleases, lipases),
	Formed from Golgi and Endosomes	hence common in macrophages and neutrophils

Pg. 2 of 66 (J.P.)

Lecture 5: Cell Membrane Specializations

Lecture Summary

- Interaction of the cell surface with the external environment
- Attachment and communication between cells, how and why?

Learning Outcomes

5.1 Know the types of specialisations on the apical, lateral, and basal plasma membranes; relating structure and location to function

Cell membrane specialisations

Apical (facing a lumen/ free space required): microvilli, cilia, sterocilia

Villi are NOT an apical plasma membrane (PM) specialisation – folds of mucosa (epithelium + lamina propria/ CT)

- Microvilli (i.e. brush border) 1-3 μm long, cytoplasmic protrusions, covered by PM, actin filament core, villi protein cap, ↑ free SA = ↑ absorption capacity
- Cilia 2-10 μm long, axoneme core (= a cylinder of microtubules MTs formed into 9 doublets surrounding a central pair 9+2 arrangement, and dynein motor protein arms project out from the MTs), regular synchronous sweeping motion
 - Tubulin (MT), dynein arms (motor via temp. x-bridges) and nexin (passive elastic recoil) project out of MT doublets [assembled by centrioles + basal bodies]
- Sterocilia 25-120 μm long immotile microvilli, twice diameter, actin filament core, located in epididymis and cochlear, passive movement due to fluid flow

[Special: Flagella: 50 µm long, propeller-like motion]

The junctional complex, or the terminal bar, is located at the apical pole of the lateral PM.

Occluding Junction

1. (0) **Zonula Occludens** = tight junctions, diffusion barrier

Adhesion: draws neighbouring cell PMs close together via cell adhesion molecules (CAMs)

Transmembrane proteins: Occludin and Claudin reinforce the site → electron dense region

Permeability: Selective movement of ions through the intercellular space (e.g. blood-brain barriers in capillaries of the brain) i.e. barrier

Linkage: into actin filaments of the cytoskeleton in the cytoplasm

Anchoring Junctions

2. (0) **Zonula adherens** = lateral adhesion between cells/ anchor via cytoskeleton

Reinforce: against mechanical stress

Adhesion: prevent lateral disruption by stabilizing the epithelial cells

Transmembrane protein: E-Cadherin, span uniform 15 nm spaces, Ca²⁺ dependent

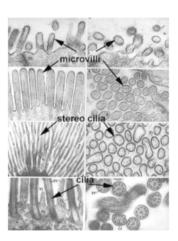
Anchorage: cytoplasm actin filaments anchors

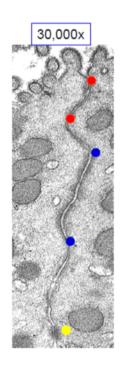
3. (0) Macula adherens (desmosomes) = spot adhesion/ anchor via cytoskeleton

Spot Adhesion: strong spot attachment site between cells, important in maintain integrity of epidermis **Transmembrane protein**: Cardherin Zipper, Ca²⁺ dependent = electron dense line, 30 nm intercellular **Anchorage**: sites for intermediate filaments

[Special: Located between epithelial cells and cardiac/ smooth muscle cells]

Communicating Junction


4. Gap junctions (nexus) = communication sites


Communication: Metabolic, ionic and electrical communication - type of voltage-gated channel

Transmembrane protein: 6 connexin proteins create circular channel, conformational changes open/ close channel (cylindrical channel 10 nm long, 3 nm diameter; 1.5 nm diameter aqueous pore; 2 nm intercellular space → not very electron dense)

Lateral interdigitations → lateral surface folds i.e. plicae of PM forming interdigitating border;

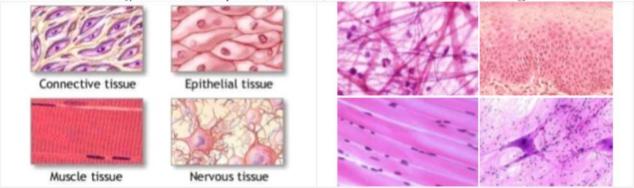
- (1) ↑ Lateral PM SA for fluid and electrolyte transport
- (2) Helps maintain cell's connections; form tissue

Pg. 13 of 66 (J.P.)

Lecture 6: The Four Basic Tissue Types

Lecture Summary

- Embryology of the 4 basic tissue types; Connective tissue in detail; Examples of specialised connective tissue discussed <u>Learning Outcomes</u>
 - 6.1 Define the embryology terms presented in this lecture
 - Tissue An orderly arrangement and distinctive pattern of cells which co-operatively
 perform a particular function
 - Structural = epithelial, connective; Functional = muscular, neural;
 - Connective Tissue (CT) –cells and extracellular materials that provide the support and connecting framework for all the other tissue of the body
- 6.2 Know the tissue derivatives of the three germ layers


 Refer to Practical 3, "All tissue derived from 3 primary germ cell layers: ectoderm (=skin/ glands),
 endoderm (=gut, respiratory, liver, pancreas, etc.), and mesoderm (=endothelium/ mesothelium glands)"

6.3 Define and classify the connective tissues

	Proper		Specialised
Loose,	D	ense	
-Highly cellular (fibroblasts, immune cells) -Few fibres (collagen ±elastin) -Numerous small BVs -Fluid-filled spaces present in the tissue due to excessive accumulation of fluid = oedema	Irregular, - Few cells (fibroblasts, immune cells) -Many fibres (all types), random orientation - Less fluid	Regular, - Few cells (fibroblasts) - Many fibres <u>in parallel</u> (collagen) - less fluid	
Lamina Propria, Loose CT under an epithelium, Commonly described in respir. & GIT CT component of mucosa	Submucosa, (loose OR dense irregular CT) supports mucosa, contains BV and nerve plexi	Tendon,	Adipose, Blood, Bone, Cartilage, Lymphatic
 → includes areolar, reticular, adipose tissue → most common, holds organs in place and attaches epithelial tissue to underlying 	→large portion of dermis, GIT submucosa, organ capsules, periosteum, perichondrium	 →provides connection between different tissues →no elastic and reticular fibres = completely absent →tendons, ligaments 	

6.4 Be able to classify a tissue as either epithelial, connective, neural or muscular, based on its histology

Pg. 15 of 66 (J.P.)

Specialised connective tissues Bone & Cartilage

Bone &	Cartilage	Marrow	Adipose	Blood	Lymphatics
	1		RO		
Adipose White	Found in los	ose CT & adult bone ma	APPOINT.		- X-5/ V
adipose	Functions: e organs	nergy homeostasis, end 00 μm diameter; round of oplasm around lipid; prest cells & nerves epicardium, hypoderm th limited energy storag ipid droplets (triglyceri	cells; flattened peripheral nu oduce leptin & angiotensino his, parathyroid gland he as carbohydrate + protein des) in adipocytes releases insulin adipocyte released muscle & cardia gluconeogenesis (+glucose he of leptin into capillaries and Y (feeding stimulant) + other	acleus; thin rim of ogen; rich BV supply, s, energy reserves stored s surface receptors → fatty ac tissue/ liver →) hypothalamus →	W. Company
Brown	Found in nev				
adipose	Functions: g	enerate body heat			

Blood – fluid CT; cell 45:55 plasma; ~6L/ average adult; transports O2 CO2 hormones humoral agents and cells; maintains homeostasis by acting as a buffer, coagulator and thermoregulator;

Plasma	91% water; 8% (electrolytes), (gases), hormo				
Erythrocytes	7-8 µm diame macrophages	1			
Leukocytes	Neutrophils (most common)	Multilobed	Cytoplasmic granules varying size, contains cytokines, anti-microbials enzymes	Phagocytosis, deployed within minutes	10-12 μm
	Eosinophil	Bilobed	Cytoplasmic granules eosinophillic, abundant lysosomes	Allergic reactions, parasite infections, chronic inflammation	10-12 μm
	Basophil (least common)	Granule obscured	Cytoplas ic granules large, abundant lysosomes, contains heparine, histamine, leukotriens, interleukins	Similar to mast cells, bind IgE→release vasoactive agents→ vascular distrubances of hypersensitivity and anaphylaxis	10-12 μm
	Lymphocyte	Large, slight indent	hin rimmed cytoplasm surrounds nucleus	Functionally classified, T- mediates, B- antibodies, NK kills	6-8 μm (6-16 μm)
	Monocytes (largest)	Large, slight indent	Many organelles	Antigen-presenting cells, transforms into tissue macrophage after 3 days	18 µm
Platelets	Thrombocytes: small, membrane-bounded cytoplasmic fragments; anucleate; derived from megakaryocytes in bone marrow. • Cell membrane has a glycocalys, cytoskeletal components, mitochondria, peroxisomes, glycogen, granules – coagulation factors, fibrinogen, serotonin • Vasoconstriction, vessel repair, blood coagulation, platelet aggregation				

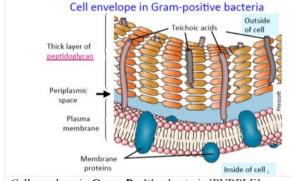
Pg. 17 of 66 (J.P.)

Lecture 17: Prokaryotic Structure - Specific Features

Lecture Summary

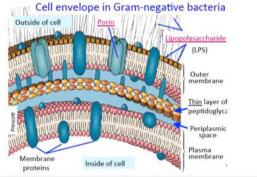
Key structural features of bacterial cell envelope; effect of environmental conditions on cell properties and relationship to
limits of bacterial life; distinctive and common bacterial molecules, relevance to pattern recognition receptors and
immune surveillance (PG, LPS, flagellin); distinctive and essential bacterial molecules, relevance as drug targets (PG,
ribosome); visible bacterial structures, relevance to immune evasion, diagnostics and vaccination;

Learning Outcomes


17.1 Be able to describe the typical structure of Gram-negative and Gram-positive cell envelopes. Know the key functions of the cell wall, and the plasma and outer membranes; Be able to give examples of phenotypically variable properties (environmentally influenced expression) and their ramifications;

Replication, transcription and translation are conserved in intracellular processes:

- General presence of nucleoid, RNA polymerase, ribosome, does not provide a sound basis for discriminating good from bad bacteria (too conserved)
- However, the long evolutionary separation of the bacteria (and to a lesser extent archaea) means sequence variation in these conserved structures is useful in classification


Different shapes and staining behaviours reflect the Cell Envelope = membrane + wall

- Membrane = lipid bilayer // Wall = rigidity (thick layer of peptidoglycan)
 - o Prokaryotic structural significance; different morphologies have different SA/Vol. ratio
 - Coccus: low SA/ V ratio, survival
 - · Rod: medium ratio, compromise
 - Filament: high, nutrient uptake
- Function: protective barrier against environment, separates ordered cytoplasm from chaotic exterior
- Differences in gram-negative and gram-positive (differences in staining; composition)

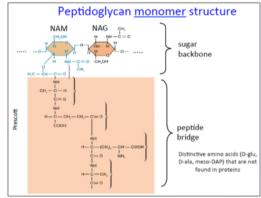
Cell envelope in Gram-Positive bacteria [PURPLE]

- Thick peptidoglycan outside cell (rigidity/ structure)
- Attached to PM by number of molecules, particularly Teichoic acids

Cell envelope in Gram-Negative bacteria [PINK]

- PM is common to both types
- Thinner peptidoglycan layer and no Teichnoic acids
- Second, outer membrane ("gate-keeper"); distinctive composition; asymmetric whereby outer is <u>LPS → lipopolysaccharide</u>, inner is phospholipid

Plasma membrane structure


- Phospholipid bilayer; integral membrane proteins (embedded or attached); glycolipid, glycoprotein (+ carbohydrates);
- Functions
 - Selective permeability: nutrient influx, waste efflux; critical selectivity no cytoplasm out or toxins in
 - Metabolic processes: e.g. ETC, resp., lipid biosynthesis occurs within the membrane
 - Site of environmental signal transduction: membrane receptors switch on regulatory proteins → activate transcription
- Clinical and other significance
 - Many antimicrobials disrupt membrane structure → leakage of cytoplasm → cell death
 - Synthetic: detergents (e.g. SDS), antiseptics (e.g. Benzalkonium)
 - Antibiotics: polymyxin, lantibiotics [probiotic stains of lactobaccilus activate against positive grams, specific targets in the PM → peptidoglycan precursors]
 - Innate immune system: defensins, cathelicidins [body produces, particularly in mucous membranes]
- Temperature extremes → maintaining membrane humidity e.g. cannot solidify or gel (low temp vs. high temp grower)
 - @minimum temp→ gelling, transport processes so slow that growth cannot occur; max→collapse of PM, thermal lyses

Pg. 45 of 66 (J.P.)

- Optimum temp. close to max → narrow difference between optimal and protein denaturation/ collapsing
 - Membrane structure determines growth limits of Bacteria
 - Specialised for different temps = different lipid composition = different growth temperatures
- All domains, limited variation
 - Archea → ether linked PM
 - All Bacteria → ester-linked phospholipids in PM
 - Vary in PM lipids varying in chain length, and in degree of saturation between saturation
 - Thermophiles tend to have more rigid (saturated) and psychrophiles more flexible (unsaturated) phospholipids
 - Eukarya → ester-linked
 - Fungi → distinctive sterols in PM (may be targeted by anti-fungals)

Bacterial cell wall contains peptidoglycan [but not all - some lack cell wall, etc.]

- · Cell wall definition
 - Gram + (thick peptidoglycan + teichoic acids)
 - o Gram (thin peptidoglycan + outer membrane LPS)
- Peptidoglycan (PG): unique; structural polymer of sugars and amino acids
 - PG backbone made of repeating di-saccharide unit, Nacetylglucosamine (NAG) + N-acetylmuramic acid (NAM); cross-linked by peptide bridges (figure→)
- Functions
 - Osmotic protection, salty cytoplasm → high pressure, membrane alone cannot resist; enzymes of innate immunity target PG (e.g. lysozyme = lysis/death);
 - Many antibiotics target PG biosynthesis (e.g. penicillin, cephalosporins, vanomycin);
 - Many Eukaryote pattern recognition receptors target PG and initiate signalling pathways to inform bacterial presence (e.g. Vibrio-Squid mutualism; Tracheal cytotoxin in whooping cough);

Primarily D-amino acids in the peptide bridge Number not found in proteins; very distinctive (But just a singal)

- Rigid envelope layer: variably present in all domains but domain-sepcified
 - Only bacteria have PG → combination of surface exposure & chemical conservation makes PG a useful signalling molecule & drug target
 - Thickness varies: Firmicutes (gram+) thicker; Proteobacteria and bacteroidetes (gram-) thin layer
 - Some do not have PG (e.g. Planctomycetes, Chlamydia)
 - o Only Arachaea have pseudomurein (PG-like molecule)
 - Eukarya is diverse in types of cell envelope (e.g. plants=lignocellulose; fungi=chitin; animal=no cell wall)
- 17.2 Recognise the significance and applications of the distinctive structures of peptidoglycan; LPS (conserved Lipid A and variable O-antigen); Be able to give examples of genetically variable bacterial properties (feature present but structure varies between species) and their applications;

Outer membrane structure (Gram Neg only)

- Outer of the two layer Lipopolysaccharide (LPS)
 - Lipid A core = truly unique and distinctive to gram negative cell wall
 - o First O unit core/ LPS Core = sugar chains
 - o O-antigen = repeating sugar chains
 - o Proteins e.g. Porins
- Outer membrane (OM) function
 - o Border control: Protective barrier against toxins (e.g. antibiotics, bile) and entry port (e.g. soluble nutrients)
 - Phase variation (O-antigen is highly variable): LPS Presence of many sugars define bacterial surface
 properties: hydrophilic, negative charge → capable of changing this sugar structure, change surface coding e.g.
 immune system target can cause change in the antigen
 - Lipid A component target for pattern recognition receptors (TLR4) usually triggers inflammatory response, endotoxin → systemic toxic effects in gram neg. infections

Pg. 46 of 66 (J.P.)

- Glycocalyx, capsule, slime layer → extra-cellular polysaccharide secreted to lie around surface (fundamentally the same)
 - Glycocalyx = layer of polyssacharides secreted by bacteria outside envelope
 - Used in attachment especially biofilms formation (e.g. dental plaque)
 - Protection against dessication and other stresses
 - Help bacteria to evade immune system difficult for phagocytes to recognise bacteria
 - Capsule = not necessarily attached, difficult to remove, well-organised glycocalyx
 - Slime layer = more diffuse glycocalyx, can be removed by washing cells
- → Variable expression of outer membrane and glycocalyx
 - o [rapid change protein expression, how much glycocalyx, what type of antigen, etc.]
- · Cell surface polysaccharides most cells have glycosylated surface molecules; varies in attachment
 - Bacterial polysaccharides attached (capsule) or loosely associated (slime layer)
 - G-ve → LPS attached to lipid A core; unique
 - O-antigen (long carbohydrate chain) highly variable structurally in types of sugars in chain and branching order; often a basis of Serotyping schemes for epidemiology; target for vaccines
 - Eukarya have surface polysaccharides, no LPS; fungi form capsules
 - Higher eukarya have LPS target for bacterial surveillance (TLR4 receptor), and stimulated adaptive response (e,g. igG) by the highly immunogenic O-antigen side chain
- 17.3 Recognise the significance and applications of surface adornments such as capsule, pili, flagella and fimbriase; Be able to describe the significance of endospores for sterilisation and diagnostics
- Fimbriae: thin (~5 nm diameter), numerous (~1000/ cell); attachment to surfaces
- <u>Pili</u>: thicker (~10 nm diameter) less numerous (few/ cell); transferring DNA i.e. sex; often encoded by conjugative plasmids, self-transmissible between bacterial cells;
- Flagella: most motile bacteria, presence/absence of flagella, & distribution pattern around cell useful for identification
 - Structure filament (Self-assembled subunits of flagellin protein, hollow filament allows transport of flagellin units, cytoplasm growing tips), hook, PG, Basal body (motor), PM
 - Function helical corkscrew filament propels bacterium forward, proton gradient = energy source, +allow chemo taxis towards nutrients or away from toxins, -need protein to build, cost of energy, highly immunogenic (H antigen), target of pattern recognition receptors (TLR5)
- Endospores (within)
 - Some G+ve bacteria (e.g. Bacillus, Clostridium) [NOT G-ve]
 - Endospores survive under stressful conditions; extremely tough e.g. heat, dessication, radiation, disinfectants
 - Metabolically inactive but can geminate to yield new vegetative cells
 - o Clinical significance: spore-forming bacteria difficult to kill via standard procedures → autoclaving required; many clinically-important bacteria are spore-formes (e.g. Bacillus anthracis → anthrax)

Summary

- Cell morphology: diagnostic value in specific situation, not generally useful
- Nucleoid: site of replication and transcription, flexible gene expression patterns (resulting from operons organisation, and regulons – co-ordinated by transcription factors) mean relationship with humans depond on context
- Ribosomes: protein factory sufficiently different from eukarya to be antibiotic target e.g. stretomcvin
- PM: selective barrier, target for antibacterial agents that are synthetic (disinfectant), biological (lantibiotic) and immunological (defensin)
- Cell wall PG: osmotic protection, structural scaffold, PG = diagnostic bacterial molecule target of receptors and drugs
- Outer membrane: protection and 'communication, O and H antigens modulate bacterial cell signal, LPS is a diagnostic
 bacterial molecule and TLR4 receptor target, H antigen is diagnostic of flagellin and TLR5 receptor target, widely used
 for serotyping schemes and as vaccine targets

Cell envelope is essential to bacteria – but is also a drug target for biocides. It is **surface-exposed**, a target for the immune system. The fundamental cell envelope differences between **G+VE** (one membrane + thick PG) and **G-VE** (two membranes, thin PG) is informative for higher level classification.

Diversity in the cell envelope is **diagnostically useful** but requires caution as it adapts to the environment by varying: **cell shape** (determined by rigid peptidoglycan layer), **membrane fluidity** (determined by fatty acids and sterol composition), **membrane permeability** (determined by membrane proteins) and **attached structures**. Bacterial surface diversity aims to change immune evasion, motility, permeability and fimbriae.

The combination of its surface exposure and chemical conservation makes PG useful for **eukaryotic detection** (via PG receptors) and target bacteria (e.g. lysozymes). Lipid A, surface polysaccharides, flagellin, etc. also used for detection.

Pg. 47 of 66 (J.P.)