Index

Week 1: Protozoans and Phylum Cnidaria

- Invertebrates
- Protozoans
 - General characteristics
 - Nutrition
 - Reproduction
 - Movement
 - Paramecium
 - Osmoregulation
 - Digestion
 - Excretion
 - Reproduction
 - Sub-phylum Kinetoplasta
 - Phylum Apicomplexa
 - Phylum Ciliophora
 - Amoebas
- Phylum Cnidaria
 - Polyps and Medusas
 - Class Hydrozoa
 - Freshwater Hydra
 - Marine Obelia
 - Physalia: Portguese Man-O-War
 - Class Scyphozoa
 - Class Antozoa

Week 2: Phylum Platyhelminthes, Nematoda and Annelida

- Introduction
- Phylum Platyhelminthes: Flatworms
 - Structure
 - Nervous system
 - Ectodermal layer
 - Endodermal layer
 - Mesodermal layer
 - Class Turbellaria
 - Class Trematoda: Flukes
 - Human liver fluke
 - Blood fluke
 - Sheep liver fluke
 - Cless Cestoda: Tapeworms
- Pseudocoelomates
 - o Phylum Nematoda: Roundworms
 - Structure
 - Ascaris lumbricoides
 - Other parasitic Nematodes
- Phylum Annelida: Segmented Worms
 - o Structure
 - o Class Polychaeta
 - o Class Oligochaeta
 - Class Hirudinida

Week 3: Phylum Mollusca

- Phylum Mollusca
 - Structure
 - Class Monoplacophora: Neopilina
 - Class Polyplacophora: Chitons
 - Class Schaphopoda
 - Class Gastropoda
 - o Class Bivalvia: Mussels, oysters, clams
 - o Class Cephalopoda: Squid, octopus, nautilus, cuttlefish

Week 4-5: Phylum Arthropoda

- Phylum Arthropoda
 - Introduction
 - Abundancy and wide distribution of Arthropods
 - General characteristics
 - Subphylum Triobita
 - Subphylum Chelicerata
 - Class Merostomata, Subclass Xiphosurida: Horseshoe crabs
 - Class Pycnogonida: Sea spiders
 - Class Arachnida: Spiders
 - Order Scorpiones
 - Subphylum Crustacea
 - Class Malacostraca
 - Structure
 - Order Isopoda
 - Order Amphipoda
 - Order Euphanusiacea: Krill
 - Order Decapoda: Shrimps, Crabs and Lobsters
 - Class Branchiopoda: Sea Monkeys
 - Class Ostracoda: Ostracods
 - Class Maxillopoda
 - Subclass Cirripedia: Barnacles
 - Subclass Branchiura: Fish parasites/lice
 - Subphylum Myriapoda
 - Class Chilopoda: Centipedes
 - Class Diplopoda: Millipedes
 - Subphylum Hexapoda
 - Class Insecta
 - Structure

Week 6: Phylum Echinodermata

- Phylum Echinodermata
 - o Structure
 - Class Asteroidea: Sea stars
 - Class Ophiuroidea: Brittle star, basket star
 - Class Echinoidea: Sea urchins, sand dollars
 - Class Holothuroidea: Sea cucumbers
 - O Class Crinoidea: Sea lillies, feather stars
 - Class Concentricycloidea: Sea daisies

Week 7: Phylum Hemichordata

- Phylum Hemichordata
 - o Class Enteropneusta: Acorn worms
 - Class Pterobranchia

Week 8-10: Phylum Chordata

- Phylum Chordata
 - Structure
 - Subphylum Urochordata
 - Class Ascidiacea: 'Tail chordates'
 - Class Thaliacea: Open ocean yunicates
 - Class Larvacea: Oikopleura
 - Subphylum Cephalochordata
 - Subphylum Vertarbata (Craniata): Early vertebrates
 - Agnatha (jawless fish)
 - Class Myxini: Hagfishes
 - Class Cephalaspidomorphi: Lampreys
 - Gnathostomes (jawed fish)
 - Class Chondrichthyes: Cartilaginous Fishes
 - Subclass Elasmobranchii: Sharks
 - Subclass Holocephali: Rays and chimaeras
 - Class Osteichthyes: Bony Fishes
 - Subclass Actinopterygii: Ray-finned fish
 - Saltwater and freshwater fish
 - Deep sea fish
 - Seahorses
 - Subclass Sarcoptergii: Lobe-finned fish
 - Class Amphibia
 - Order Gymnophiona (Apoda): Caecilians
 - Order Caudata (Urodela): Salamanders
 - Order Aruna: Frogs
 - Class Repitilia: Modern reptiles
 - Subclass Anapsida
 - Order Testudines: Turtles
 - Subclass Diapsida
 - Order Crocodilia: Crocodiles and alligators
 - Order Sphenodonta: Tuataras
 - Order Squamata
 - Suborder Sauria: Worm lizards
 - Suborder Sepentes: Lizards and snakes

Week 1: Protozoans and Phylum Cnidaria

INVERTEBRATES

General

- Form the basis of many food webs after the plants
- They can decrease or increase their numbers to plague proportions a cascade effect, which can impact top predators

Taxonomic Classification of Animals

- 1. Kingdom
- 2. Phylum

	0	Sub-Phylum	REMEMBER
3.	Class		KEEP POND
	0	Sub-Class	CLEAN OR
4.	Order		FROGGY
5.	Family		GETS SICK
^	0		

- 6. Genus
- 7. Species

Conventions

- Family names end in 'dae'
- Subfamily names end in 'nae'
- Each species has a Latin binomial (two words) a genus followed by a species name
- The **genus** begins with a **capital (upper case)** letter and is in *italics* or <u>underlined</u> e.g. *Physalia*, *Obelia*, *Paramecium*, *Hydra*
- Species names begins with a lower case letter and are also in italics or underlined
 - Species names are rarely used alone always after the name of the genus e.g. Homo sapiens NOT sapiens
 - If a scientific name is used many times, the genus name can be abbreviated e.g. H. sapiens AFTER it has been spelt out once
 - o If a single species hasn't been formally described and named you can use the abbreviation 'sp.' e.g. *Paramecium* sp.
- If you aren't sure if there's just one species use 'spp.' E.g. *Paramecium* spp.
- Sp. And spp. Are NOT Latin words so they are NOT in italics or underlined
- Genus is singular = 1 genus
- Genera is plural = 2 or more genera
- Species is used for one or more species; never use 'specie'

PROTOZOANS

General Characteristics

General

- Main characteristics
 - Animal-like features
 - o Uni-cellular
 - Most are microscopic
 - No cell wall
 - Complex organelles
 - No organs or tissues
 - Variable shape
 - Very diverse
- Structures involved in locomotion are...
 - o Cilia
 - o Flagella
 - o Pseudopodia
- They have structures involved in obtaining food and osmoregulation
 - o Particularly Paramecium, which has a contractile vacuole
- There are various modes of reproduction
 - Asexual
 - Fission
 - Budding
 - Cysts
 - Sexual
 - Conjugation
 - Syngamy

Nutrition

- Autotrophic: Able to synthesise their own food
- Heterotrophic: Obtain organic molecules synthesised by other organisms e.g. phagotrophs (ingest visible particles)
- **Saprozoic:** Ingests food in a soluble form

Reproduction

General

- Asexual
 - o Fission
 - o Budding
 - Cysts
- Sexual
 - Conjugation
 - Syngamy

Sexual Reproduction

- Conjugation the exchange of genetic material
- Two Paramecium come into contact on the oral surface
- Increases genetic variation

Movement

- Protozoans move chiefly by cilia/flagella/pseudopodia
- Cilia create water currents for feeding/respiration, and are also responsible for food handling/reproduction/excretion/osmoregulation
- There are no morphological differences between cilia and flagella
 - o Cilia are hair-like
 - o Flagella are whip-like

Movement of Cilia

- Consists of a power stroke and return stroke
- A Paramecium will know when to change direction when the **electrical potential changes** across its membrane
 - Attraction increases the rate of the forward ciliary beat
 - Avoiding reaction results in ciliary reversal and backward swimming

Movement of Pseudopodia

- "Pseudo" = False
- "Podia" = Foot
- How do pseudopodia work?
 - o (1) Blunt extension of cell body forms (lobopodia = broad thick pseudopodia)
 - o (2) Hyaline cap forms (extension of the ectoplasm)
 - o (3) Endoplasm then flows into the hyaline cap
 - (4) Hydrostatic pressure forces endoplasm towards the hyaline cap

Movement of Flagella

- Simple undulations

Paramecium

General

- Representative ciliate
- Slipper shaped
- Anterior blunt
- Posterior pointed
- Oral groove depression on ventral side with cytostome (mouth)
- Trichocysts thread like strands that can be discharged
 - O What is the function of a trichocyst?
 - o May be a defence mechanism or used for anchorage while feeding

Osmoregulation

General

- Vacuoles observed in cytoplasm
- Contractile vacuoles function in osmoregulation (water balance) mainly in freshwater protozoans
- Remove excess water that's entered the cytoplasm by osmosis
- Vacuoles are made of a system of cisternae and tubules
- Proton pumps in their membranes transport hydrogen and co-transport bicarbonate into the vacuoles

Contractile vacuole work to remove excess water in a three-stage process

- (1) Water diffuses in passively to maintain an osmotic pressure = to that in the cytoplasm
- (2) Vacuole fills & its membrane fuses with the surface membrane
- (3) Water & ions are expelled

Digestion

General

- Engulfed in a food vacuole intracellular membrane bound vesicle
- Lysosomes small vesicles containing digestive enzymes, fuse with food vacuole
- Undigested material released to outside exocytosis Most ciliates / flagellates a definite mouth structure (cytostome)
- Amoeba release can occur across almost any point along membrane

Excretion

General

- Metabolic wastes entirely by diffusion
- Main end product of nitrogen metabolism is ammonia readily diffuses across cell membranes

Reproduction

Fission

- Multiplication of cells that produces more individuals
- Most common is binary fission produces 2 identical individuals
- Nuclei divide

Sexual Reproduction

- No embryo development
- Sexual reproduction is common
- Essential features of sexual reproduction include...
 - Reduction in chromosome number to half
 - Development of sex cells (gametes)
 - o Fusion of gamete nuclei

Encystment & Excystment

- Some protozoans form cysts to survive in harsh conditions

- Parasitic forms survival between hosts produce a protective outer coating e.g.
 Giardialamblia
- Common in soil and freshwater inhabiting species, rare to absent in marine environments

Giardia lamblia
Late cyst in freshwater,
waiting for a host

Giardia lamblia
Trophozoite, feeding stage,
in mammalian gut

Sub-Phylum Kinetoplasta

General

- Parasitic most important protozoan parasites are kinetoplastans
- Some nonpathogenic others produce severe disease in humans and animals e.g.
 Trypanosoma
 - o T. brucei rhodesiense causes African sleeping sickness
 - Transmitted by Tsetse fly
 - Doesn't affect the antelope and other wild mammals that carry the parasites
 - Trypanosoma cruzi Chagas disease in humans 'An adult "kissing bug", the most common species (Triatoma rubida) – vector of Chagas disease

African Sleeping Sickness

- Wild game in Africa trypanosomes
- Fly bites wild mammals then bites human probably not the actual cause of infection
- Multiply in number in blood
- Invade tissue fluid around spinal fluid and brain
- Person loses consciousness

Phylum Apicomplexa

- Endoparasites
- Group of organelles, the apical complex
- Locomotor organs less obvious
- At some point in life cycle spore develops
- Often life cycle with sexual and asexual stages
- Invertebrate intermediate host included in cycle
 - Example: Plasmodium sporozoan parasite which causes malaria, vector is the mosquito

Female Anopheles injecting sporozoites of Plasmodium spp. that migrate to the liver

Phylum Ciliophora

General

- Have cilia
- Structurally complex and diverse
- Free-living, commensal, or parasitic
- Have a pellicle
- Multinucleate
- Macronucleus for metabolic, developmental functions
- Micronucleus for sexual reproduction

Reproduction

- Binary fission
- Conjugation
- Self-fertilization (autogamy) similar to conjugation but no exchange of nuclei

Amoebas

- Locomotion and feeding by pseudopodia
- Inhabit diverse moist environments
- Most are omnivores
- Nucleus, contractile vacuole, food vacuoles easy to see
- Few endoparasitic e.g. Entamoeba histolytica causes amoebic dysentry
- Not all are naked some have protective tests (shell)

