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Two events are said to be independent if  
 

R 6 ∩ L = R(6)×R(L) 
which implies that  
 

R 6 L = R(6) 
If events are not independent, then they are said to be dependent. 
 
So we can tell if two events are independent or dependent by looking at 
either their joint probability or their conditional probability. 
 
Mutually exclusive events A and B such that R(6) ≠ 0 and R(L) ≠ 0, are 
dependent because  
 

R 6 ∩ L = 0	 ≠ R(6)×R(L) 
 
An exception is when if either R 6 = 0 or R L = 0 then 
 

R 6 ∩ L = R ∅ = 0 = 	R(6)×R(L) 
  
This is the only case where on set of events can be both independent and 
mutually exclusive 
 

Random Variables 
 
We can define a function or rule that assigns a numerical value to each 
outcome of a categorical experiment. Such a rule is known as a random 
variable. For example, in the case of a coin we could define a random 
variable: 

d = 	:ℎ4	:A:03	9f1B4-	AJ	ℎ40`>	AB>4-84` 
 

Discrete random variable can take countable number of distinct values, 
meaning that the set of values are a subset of the natural numbers {1,2,3,4,…} 
so random variables can also take an infinite number of distinct values. 
Example: number of applicants to a university. 
 
A random variable is described entirely by its probability distribution. For 
simple DRV’s this is just a list or table of values that the RV can possibly take 
and their associated probabilities. This is also known as a probability mass 
function. 
 
Example: Let X be the # of heads observed after 3 coin flips. The PMF is 
given by: 
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Another way we can describe a random variable is via its cumulative 
distribution function which gives the probability being less than or equal to 
some value c. 

gh 5 = R d ≤ 5 , 5 ∈ ℝ 
 
CDF’s satisfy the following properties: 

1. gh −∞ = 0 
2. gh ∞ = 1 and 
3. 0 ≤ gh 5 ≤ 1	JA-	033 − ∞ < 5 < ∞ 

 
 
The expected value (mean) of a random variable is the weighted sum of all 
the possible outcomes in which the weights are of associated probabilities.  
 
Given a DRV X  with possible values  hD, hF, … , hl that occur with probabilities 
R(d = h\), for ? = 1,… , m, the expected value of X is 

n = 7 d = h\R(d = h\)
l

\oD
 

 
To determine the how spread out or dispersed our observations would be if 
we were to observe many realisations of a random variable we would 
compute the variance.  

pF = q d = 7 d − n F = (h\ − n)FR(d = h\)
l

\oD
 

another way to calculate variance is 
 

pF = 7 dF − nF 

Discrete Bivariate Distributions 
Consider an experiment where the outcomes can be described in terms of 
two random variables (X, Y), with X � {x1, x2} and Y � {y1, y2, y3}. We can 
represent all possible outcomes in a table: 

 
Observe that each outcome is a joint event of the form 

 
{d	 = 	h	 ∩ r	 = 	<}. 

 
If we add row and column sums to the previous table, then we obtain a 
marginal probability distribution 
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If we condition on the event X=x1 then we see that the various probabilities 
of Y the we know that the various probabilities of Y occurring are P(x1, y1), 
P(x1,y2), and P(x1,y3). These values are not a valid probability distribution 
because the do not add up to 1. Instead: 

 
To obtain a valid probability distribution we simply scale it by its sum. Thus 

 
Here P(x1) plays the role of a normalizing constant, which scales 
probabilities so that they sum to unity. To scale for independence one needs 
to check that for every cell in the table, 

 
• If this relationship fails to hold for at least one cell, then the RV’s are 

dependent. 
 
If the joint probabilities are specified as a function, then that function must 
factor according to  

 
If R h\, <t = 0 for any pair (?, u) then the events X=xi and Y=yi are mutually 
exclusive. The only way the RV’s X and Y can be mutually exclusive for all of 
their possible values is if one or both have zero probability of ever 
occurring. 
 
We can obtain a measure of the association between two random variables 
by computing their covariance, 
 

pvw = x=q d, r = h\ − ny <t − nz R(d = h\ ∩ r = <t)
{

toD

l

\oD
 

 
As is the case with the sample covariance, we can rescale this quantity to 
obtain the coefficient of correlation, 

If 2 RV’s X and Y are independent, then their correlation is zero. However, 
the reverse is not true. 


