Topic 1 – Capital Budgeting

NPV

- Accurate and reliable
- Time Value of Money
- Can take into account risk
- Invest in positive NPV
- Value is the present value of expected cash flows
- Use appropriate discount rate
- 1. Project Cash Flows
- 2. Determine Appropriate Discount Rate (Topic 2)
- 3. Calculate NPV

Incremental effect of project:

Free Cash Flow

Free Cash Flow = (Revenues - Costs - Depreciation) ×
$$(1 - \tau_c)$$

+ Depreciation - CapEx - ΔNWC

or

Free Cash Flow = (Revenues - Costs) ×
$$(1 - \tau_c)$$
 - CapEx - ΔNWC + τ_c × Depreciation

The Last term τ_c × Depreciation is called the depreciation tax shield.

Incremental Earnings Forecast		
Revenue		
- Costs		
= EBITDA		
- Depreciation and Amortisation		
= EBIT		
- Tax		
= Unlevered net income (EBI)		

F	ree Cash Flow to Firm
	Unlevered Net Income
+	Depreciation and Amortisation
-	CapEx
-	ΔΝΨΟ
+	(After tax Cash Flow from Asset Sale)
=	FCF to Firm

- After Tax Cash Flow from Asset Sale
- = Sale Price tax on gain on sale
- Gain on sale = Sale Price Book Value
- Book Value = Purchase Price –
 Accumulated Depreciation

$$NPV = \sum_{t=1}^{n} \frac{FCF_t}{(1+r)^t}$$

Equivalent annual benefit (when project have different lifes):

$$EAB = \frac{NPV}{\frac{1}{r} \left[1 - \frac{1}{(1+r)^t} \right]}$$

Profitability Index = NPV/Initial Investment

- Measures value created for every \$1 of investment
- Can be used when resources constrained

Break Even Analysis

• The break-even level of an input is the level that causes the NPV of the investment to equal 0

Sensitivity Analysis

- Shows how NPV varies with change
- Change one assumption, hold others constant

Scenario Analysis

 Considers the effect on NPV of simultaneously changing multiple assumptions.

Topic 2 – Cost of Capital

Discount Rate

- Reflects the risk of cash flows
- Reflects return required (capital providers)/ cost of capital (firm)
 - Time value of money
 - o Risk
- Risk premium is determined by the amount of systematic risk (beta)
- CAPM
- The estimate is provided by the Security Market Line equation:

$$E[r_i] = r_f + \beta_i [E(R_{Mkt}) - r_f]$$
Risk Premium for Security i

- Market risk premium (E[R_{Mkt}]-r_f): price of systematic risk
- β_i: amount of systematic risk
- r_f: risk free rate
- Market risk premium: appropriate market proxy
 - Historical market risk premium
 - Use average excess return over risk free rate
 - Drawbacks: errors are large, backward looking
- Alternative Market Risk Premium

$$r_{Mka} = \frac{Div_1}{P_0} + g = Dividend Yield + Expected Dividend Growth Rate$$

$$Market Risk Premium = \frac{Div_1}{P_0} + g - r_f$$

- Risk Free Rate: consistent with time horizon (T-Bills, T-Bonds)
 - o Not always risk free: inflation risk, real interest rate risk
- Beta
 - \circ Expected $\Delta\%$ in excess return of the asset for a 1% change in the excess return of the market portfolio
 - o Systematic Risk

$$\beta_i = \frac{cov(r_i, r_m)}{Var(r_m)}$$

- o Covariance:
- o Beta Estimation: use historical returns
 - Regression of asset excess returns versus market excess returns
- Beta should be project specific
- All equity comparable
 - Asset Beta = Equity Beta for unlevered firm
 - Borrowing increases systematic risk for debt holders
 - Debt Beta = systematic risk for debt holders