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Vector Calculus Lecture 3: 
 
Double Integrals 
Green’s Theorem 
Divergence of a Vector Field 
 
Double Integrals: 
Double integrals are used to integrate two-variable functions 𝑓(𝑥, 𝑦) over a region 𝑅 in the 
𝑥𝑦-plane. The theory behind double integrals involves splitting the region up into small 
rectangles with dimensions Δ𝑥 and Δ𝑦. 
 

 
 
Integrating a function 𝑓(𝑥, 𝑦) over this region is then a matter of summing the value of the 
function multiplied by the dimensions of each rectangle for each rectangle. Taking the limit 
as Δ𝑥 and Δ𝑦 approach zero produces the double integral with respect to 𝑑𝐴 = 𝑑𝑥𝑑𝑦. 
 

∬ 𝑓(𝑥, 𝑦)
 

𝑅

𝑑𝐴 = ∬  
 

𝑅

𝑓(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 

 
Double integrals are evaluated by performing integration twice, once with respect to 𝑥 and 
once with respect to 𝑦. In order to find the limits for these integrals, we need to express 𝑅 
using inequalities in terms of 𝑥 and 𝑦. This often takes one of the following forms. We are 
often required to express one of these variables in terms of the other. 
 
𝑎 ≤ 𝑥 ≤ 𝑏, 𝑓(𝑥) ≤ 𝑦 ≤ 𝑔(𝑥)   or   𝑐 ≤ 𝑦 ≤ 𝑑, 𝑝(𝑦) ≤ 𝑥 ≤ 𝑞(𝑦) 
 
Consider the following examples. 
 

 



 

 
 
When we evaluate double integrals, we have to evaluate with respect to the variable that 
has been expressed in terms of the other variable first. For example, if we have expressed 
the region using the inequalities 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑦 ≤ 1 − 𝑥 then we have to evaluate 
the definite integral with respect to 𝑦 first. This will eliminate 𝑦 so we can evaluate with 
respect to 𝑥 to produce a number. Consider the following example. 
 

 
 
Double integrals allow us to calculate three different physical quantities in 3D space: area, 
volume, and mass. If the region 𝑅 is the region defined by 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑓(𝑥) ≤ 𝑦 ≤ 𝑔(𝑥), 
then the area of 𝑅 is given by the following double integral. 
 

𝐴𝑟𝑒𝑎 = ∬  
 

𝑅

𝑑𝐴 = ∫ [𝑔(𝑥) − 𝑓(𝑥)] 𝑑𝑥
𝑏

𝑎

 

 
If a function 𝑓(𝑥, 𝑦) is greater than 0 for all values in some 𝑥𝑦-region 𝑅 then 𝑧 = 𝑓(𝑥, 𝑦) 
represents the surface sitting over 𝑅 in the 𝑥𝑦-plane. The volume of the solid formed 
between the region 𝑅 on the 𝑥𝑦-plane and the function 𝑧 = 𝑓(𝑥, 𝑦) is then given by the 
following double integral. 
 

𝑉𝑜𝑙𝑢𝑚𝑒 = ∬  
 

𝑅

𝑓(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 

 
Suppose that a infinitely thin material in the shape of some region 𝑅 in the 𝑥𝑦-plane has a 
density characterised by the function 𝑓(𝑥, 𝑦). The mass of the material is then given by the 
following double integral. 
 

𝑀𝑎𝑠𝑠 = ∬  
 

𝑅

𝑓(𝑥, 𝑦) 𝑑𝑥𝑑𝑦 



Double integrals that are defined over a disc-like region can be more easily evaluated using 
polar coordinates rather than Cartesian coordinates. This means we express everything in 
terms of the radius 𝑟 and the angle from the positive 𝑥-axis 𝜃. We use the following 
equations to convert from Cartesians coordinates to polar coordinates. 
 
𝑥 = 𝑟 cos 𝜃 
𝑦 = 𝑟 sin 𝜃 
 
Since we are now integrating a function over a region in polar coordinates, the region is split 
up using origin-centred circles and rays emanating from the origin. 
 

 
 
As done previously for Cartesian coordinates, taking the limits as Δ𝑟 and Δ𝜃 approach zero 
produces the double integral with respect to 𝑑𝐴 = 𝑟𝑑𝑟𝑑𝜃. 
 

∬ 𝑓(𝑥, 𝑦)
 

𝑅

𝑑𝐴 = ∬ 𝑓(𝑟 cos 𝜃 , 𝑟 sin 𝜃)
 

𝑅

𝑟𝑑𝑟𝑑𝜃 

 
Green’s Theorem: 
Green’s theorem states that a double integral over a plane region is equal to a line integral 
over the boundary of the region. We can use this formula to more easily evaluate difficult 
line integrals using double integrals. 
 

∮ 𝑭. 𝑑𝑟
 

𝐶

= ∮ 𝐹1𝑑𝑥 + 𝐹2𝑑𝑦
 

𝐶

= ∬ (
𝛿𝐹2

𝛿𝑥
−

𝛿𝐹1

𝛿𝑦
) 𝑑𝑥𝑑𝑦

 

𝑅

 

 
Combining Green’s theorem and the double integral formula for area, we can derive an 
additional formula for calculating the area of a region 𝑅 using a line integral over the closed 
curve 𝐶 bounding the region. 
 

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑅 =
1

2
∮ – 𝑦𝑑𝑥 + 𝑥𝑑𝑦

 

𝐶

 

 
The formula for Green’s theorem can be rewritten in vector form using the curl of an 
arbitrary vector field 𝑭(𝑥, 𝑦) = 𝐹1(𝑥, 𝑦)𝑖 + 𝐹2(𝑥, 𝑦)𝑗. 
 

∮ 𝑭. 𝑑𝑟
 

𝐶

= ∮ 𝐹1𝑑𝑥 + 𝐹2𝑑𝑦
 

𝐶

= ∬ (∇ ×  𝑭). 𝑘 𝑑𝑥𝑑𝑦
 

𝑅

 



Divergence of a Vector Field: 
The divergence of a vector field 𝑭 is the scalar dot product of the vector field and the del 
operator ∇. The divergence of a vector field is a measure of the extent to which the vectors 
at a point are travelling inwards, outwards, or neither. 
 

𝑑𝑖𝑣 𝑭 = ∇. 𝑭 =
𝛿𝐹1

𝛿𝑥
+

𝛿𝐹2

𝛿𝑦
+

𝛿𝐹3

𝛿𝑧
 

 
Consider the following examples of vector fields and how the divergence is used to describe 
whether the origin is a source, sink, or neither. 
 

 

 
 
If the divergence of a vector field is 0, then the vector field is said to be divergenceless or 
solenoidal. Note that the divergence of the curl of a vector field is always 0. 
 
𝑑𝑖𝑣(𝑐𝑢𝑟𝑙 𝑭) = 0 
 
Finding the double integral of the divergence of an arbitrary vector field 𝑭 = 𝐹1𝑖 + 𝐹2𝑗 and 
using Green’s theorem produces the following equation involving the normal to the curve 𝐶. 
This is known as the flux of the vector field 𝑭 over a curve 𝐶. 
 

𝐹𝑙𝑢𝑥 𝑜𝑓 𝑭 𝑜𝑣𝑒𝑟 𝐶 = ∮ 𝑭. 𝒏 𝑑𝑠
 

𝐶

= ∬ 𝑑𝑖𝑣 𝑭 𝑑𝑥𝑑𝑦
 

𝑅

 

 
 


