BUSS1020 Theory and Formulas Notes

Chapter 1: Introduction

Branches of analytics

- 1.Descriptive: collecting, summarising, presenting, analysing
 - o e.g. survey, tables, sample mean
- 2.Inferential: Data from small group to draw conclusions about larger groups
 - o e.g. estimation, hypothesis testing
- Predictive: Model and data to make forecast and outcomes
 - o e.g. statistical model

Types of variables

- Categorical (qualitative): yes/no defined categories
- Numerical (quantitative): represent actual quantities
 - o Discrete: counting item (number of kids) 5
 - ° Continuous: Measuring characteristic (financial return)
 - 5.398

Levels of data measurement

- Nominal
 - Labels are used to distinguish different categories (e.g. employment classification - teacher, doctor...)
- Ordinal
 - Labels to classify AND indicate rank with underlying scale but levels not comparable (e.g. computer tutorial was helpful or not etc)
- Interval
 - Numerical data and different between values have consistent meaning (location of 0 is matter of convenience e.g. celsius temp)
- Ratio
 - Same as interval AND 0 has true meaning significance, represents absence of the phenomenon measured (e.g. measurement, price)

Chapter 2: Organising and visualising data

DCOVA

Define variables

Collecting data

- Primary Sources: Analyst collects data from political survey, from experiment
- Secondary: Analysing census data, consultant analysing company database
 - o Distributed by organisation/individual
 - o Designed experiment
 - o Survey
 - o Observational study

Organising data

Categorical data

- 1 categorical table = summary table / 2+ = contingency table
- Pivot table (visual): Automatically sort, count total or give the average of the data stored in one table or spreadsheet.

Numerical data

- Ordered array
 - OSequence rank from smallest to largest -range and outliers
- Frequency distribution
 - oSummary table numerically ordered classes to see characteristics
 - Classes: boundaries and 5-15 classes (determined by number of values)
 - Class interval: range/class groupings (ascending, range, select class number, interval, boundaries, midpoints)
 - Relative frequency (% adds up to 1)
- Cumulative distribution
 - oFrequency and percentage adding up to n

Visualising data

Categorical data

- 1 variable
 - o Bar chart: amount, frequency, percentage of value
 - o Pie: broken to slices rep categories
 - o Pareto chart: vertical bar in descending order & cumulative polygon (separate vital few from trivial many)
 - ° Side-by-side: data from contingency table

Numerical data

- 1 variable
 - OHistogram: organise data into groups (bins)
 - frequency distribution
 - No gaps continuos data
 - X-axis: class boundaries / Y: Frequency/relative frequency, percentage
 - o Polygon: midpoint of each class represents data in that class, connecting by midpoints
 - At class midpoints (between 2 values)
 - Ogive: X-axis variable / Y: cumulative percentage (cumulative percentage polygon)
 - At class points (not between)
- 2+ variables
 - oScatter Plot
 - Paired observations one on each axis
 - Examine relationships
 - oTime-series plot:
 - Study patterns in values
 - X: Time period / Y: numeric variable
 - oMultidimensional data to discover patterns, summary, contingency tables

Principles of graphs

• Not distorted, char junk, must begin at 0, label, title, simple, source data, covey the message

Chapter 3: Numerical descriptive measures

Central Tendency

Arithmetic Mean

Median

$$\overline{X} = \frac{\displaystyle\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

• Middle number (not affected by outliers)

$$\frac{n+1}{2}$$

Mode

• Value occurs most often (not affected by outliers)

Geometric mean

• Rate of change of variable over time

$$\overline{X}_G = (X_1 \times X_2 \times \cdots \times X_n)^{1/n}$$

Geometric mean rate of return

• Measures status of investment over time

$$\overline{R}_G = [(1+R_1)\times(1+R_2)\times\cdots\times(1+R_n)]^{1/n} - 1$$

Variation

Range

- Sensitive to outliers
- X_{largest} X_{smallest}

E.g.

$$X_1 = \$100,000 \quad X_2 = \$50,000 \quad X_3 = \$100,000$$

$$\overline{R}G = [(1+R_1)\times(1+R_2)\times\cdots\times(1+R_n)]^{1/n} - 1$$

$$= [(1+(-.5))\times(1+(1))]^{1/2} - 1$$

$$= [(.50)\times(2)]^{1/2} - 1 = 1^{1/2} - 1 = 0\%$$