Functional Proteins and Genes

Summary

Week 2 - Lipids & Sugars

- Characteristic and function of lipids:
 - · have a charge
 - make up cell membranes
 - efficient energy reserves (they don't hold water)
 - some are hormones (sterols and sex hormones)
 - aid in digestion (bile acids)
- Fatty acid —> carboxylic acid + long chain hydrocarbon
- Plamitic acid —> carboxylic acid + 16 carbon long hydrocarbon chain (16:0)
 - C₁ is the carbon in carboxyl group
 - C₂ is the **a** (alpha) carbon
 - C₃ is the β (beta) carbon
 - Last carbon is ω (omega) carbon
- Saturated fatty acid —> only single bonds (linear)
- Unsaturated fatty acid —> 1 or more double bonds (bent)
 - 16:0 —> 16 carbons long with no double bonds (saturated)
 - 18:2 —> 18 carbons long with 2 double bonds (unsaturated)
- e.g. omega-6-fatty acid \rightarrow distance between ω carbon and double bond is 6 carbons
- Fatty acids are always even numbered
- Double bonds are represented by **Δ** (**delta**)
 - e.g. cis- Δ^9 —> a double bond is at carbon 9-10, with the methyl groups (carbons) on the came side
- **Essential fatty acids** —> out body cannot make them, have to get it from food:
 - Linoleic acid —> 18:2^(9,12) —> 18 carbons long, 2 double bonds at carbon 9-10 and 12-13
 - Linolenic acid $-> 18:3^{(9,12,15)} -> 18$ carbons long, 3 double bonds at carbon 9-10, 12-13 and 15-16

- Arachidonic acid —> 20:4^(5,8,11,14) —> 20 carbons long, 4 double bonds at carbon 5-6, 8-9, 11-12 and 14-15
- Our bodies can make these:
 - Miristic acid —> 14:0
 - Plamitic acid -> 16:0
 - Stearic acid —> 18:0
- Cis double bond would make the chain bent trans double bond would keep it straight
- More double bonds (unsaturated) —> lower the melting point —> can't pack together closely
 - e.g. olive oil —> lots of unsaturated fatty acids —> liquid at even room temperature
 - e.g. butter —> lots of saturated fatty acids —> can maintain its structure at higher temperatures —> harder to melt than olive oil

Week 2 - Carbohydrates

- $(CH_2O)_n$ -> n = 3 or more
- **Glycerol** —> has 3 carbons with OH on each carbon
- The furthest chiral carbon from C₁ −> determines if D or L sugar
 - If OH on right —> D sugar
- Isomer —> same number of atoms just in different combination
- Enantiomer —> an isomer that has a mirror image
- Pyra ring -> 5 carbons + 1 oxygen
- Actual name for glucose: e.g. α-D-glucopyranose
- Glucose —> down-up-down
- **Galactose** —> down-up-up
- Mannose -> down-up-up
- **Ribose** -> 5 carbon sugar in the form of a furan ring
- Fructose -> 6 carbon sugar in the form of a furan ring $-> C_2$ joints to C_5
- Glyceraldehyde —> glycerol + aldehyde group at C₁

Week 3 - Proteins I (amino acids)

- Functional proteins —> enzymes (globular)
- **Structural proteins** —> keeping us together (fibrous)
- **Glycine** is the only amino acid that is achiral (doesn't have chiral carbon)
- Proline is the only amino acid that has NH₂ instead of NH₃⁺ —> the ring attaches back on itself
- Anion (-ve) -> zwitterion (neutral) -> cations (+ve)
- Hydrogen (proton) first attaches to the amine group and then to the carboxyl group
- Amino acids are categorised into 4 groups:
 - non-polar
 - polar
 - +ve charge
 - · -ve charge
- Cystine has sulfhydryl (thiol) group which allows it to form disulphide bonds
- Lysine is an essential amino acid
- Protein structure levels:
 - primary —> linear amino acid sequence
 - secondary \rightarrow a-helix and β -sheets
 - **tertiary** —> polypeptide chain of α -helix and β -sheets
 - quaternary —> having 2 or more tertiary structure subunits
- Peptide bonds are all in trans (opposite) configuration
- Even though peptide bonds are single bond —> acts like a double bond —> can't bend

Week 4 - Proteins II (structure)

- Looking at a primary structure —> go from N to C terminus
 - · N terminal goes in ribosome first
- Different types of bonds in proteins:
 - Covalent bonding (sharing electrons) —> peptide and disulphide bond
 - Hydrogen bonds —> weak interactive of electronegative atoms (polar interactions)
 - Ionic bonds (giving electrons) —> attracting opposite charges
 - **Non-bonding interactions** —> e.g. hydrophobic interactions, where they hang out together since they all hate water
- There can be disulphide bonds between side chains -> bending the peptide backbone
- Peptide bonds can form by the backbone folding back on itself
- Cystine and methionine both have sulphur
- When primary structure —> α-helix: Ri —> Ri + 4
 - the carboxyl on the first carbon will attach to the amino group on the 5th amino acid, which is 4 amino acids away from it
- α-helices are usually 12-40 residues long

Forming an α-helix

- too large (tryptophan, tyrosine) and too small (glycine) residues won't work
- branched [at β carbon] amino acids (valine, isoleucine, threonine) can destabilise by clashing
- polar or charged amino acids won't work due to hydrogen bonding competition
- proline also wouldn't work as it lacks a hydrogen in its amino group

Forming a β-sheet

- Can be parallel, antiparallel or mix (both)
- Antiparallel is much stronger as the hydrogen bonds align perfectly
- Beta sheets can be up to 4-5 strands