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OPTIMISING DIFFERENTIALE FUNCTIONS

CHAPTER 1: OPTIMISING DIFFERENTIABLE FUNCTIONS

Examples: physics, chemical reactions, scheduling, manufacturing.

Eg: Minimising Surface area of can
Start by modelling the can as a cylinder:
V =mr?h =375mL

S =2mr + 2mr?
|74

mr?

21
= S(r) = T+ 2mr?

=~ dif ferentiate ect

1
)
ST =1—
T
But: this givesr = 3.91; h = 7.82. So why is this different to the ACTUAL size of a can?

Modelling in incorrect (eg- S has no width, indentation at bottom ect)

industrial paramenters: dgiz, = 0.0104cm
dtop = 0.0236cm
dbottom = 00203cm

= §(h,1) (not an area) = 2nrhdgge + Trdportom + Tr2diop
_ V ) 2V )
~S(r) = 2nr (m) dsige + 1T (dbottom + dtop) = Tdside +nr (dbottom + dside)

as 2V
d_r - _r_ZdSide + 21 (dpottom + dsige) = 0

Mathematical optimisation:
Given an objective function, f: R" - R (scalar function)

And a feasible region: ¥
And optimisation problem is the problem of finding an x* € R" that solves:

i ey ey
min f(x) |x or max f(x) |x

Optimisation of differentiable functions of one variable
Some scenarios:



f(x) is constant for x € [a, b]
= all x € [a, b] optimised

f(x) is linear for x € [a, b]
~ optimised points on boundary

f(x) has unique global extremity in interior:

f(x) has multiple local maximum or minimum
must use computers and find an algorithm to solve it

Global minimum and maximum
Definition: a point x* is a global minimum if f(x*) < f(x) Vx € ¥

Definition: a point x* is a local minimum if there is a neighbourhood N of x*|f(x*) < f(x)Vx € N

Identifying local extremities of f(x)
1. First derivative test f'(x*) = 0 (could be min, max or inflexion), only necessary condition
for the existence of optimal
2. Sufficient condition can be established using higher order derivatives:
- f'(x*) =0; f"(x*) < 0: local maximum
But: eg this would not mind max of —x*
- i f) =f"(x) == P (x") = 0and
F2M(x*) < (>)0,x* is maximum(minimum)
- f(x*) == F2M(x*) = 0, and 2™ 1(x*) # 0, then x* is a point of
inflection

Finding global extremity:
Now we can test for global extremity:

min{f (a), f (b), f (x1), f (x2) .., f (xic)}

(or max)

Revision of solving linear equations:
Eg:

Ax=b
x=A"1h

Pivot operation algorithm:
Eg solve:



1 -1 1 X1 -2
-1 2 3 X3 0

Decide on a pivot element, a;; # 0
Divide row i by a;; # 0 (in our lecture, a;; are large enough to not amplify errors (that it
may in a computer))

3. Transform all other rows of ay; (k # i) by adding suitable multiples of row i

Eg: in tableaux form

Xq X X3 b
1 -1 1 -2
2 1 -1 5
-1 2 3 0
X1 Xy X3 b
1 -1 1 -2
0 3 -3 9
0 1 4 2
Xq Xy X3 b
1 0 5 -4
0 0 -15 15
0 1 4 -2
x3=—1Lx,=-2—-4(-1)=2;x, =—4-5(-1) =1

Transformation of linear functions with Gaussian Jordan elimination

1 -1 1 -1 0 -2
<2 1 -1 0 1>x=<5 )
-1 2 3 1 2 0

As this system has infinite solutions, we can simplify a solution Z = c;x1 + 3%, + c3x3 + C4x4 +
C5Xs5 + ¢ into the form:

Basic/nonbasic variables
If we were given:

Z =Ax4+Bxs+C
(as xq, x5 and x5 can be expressed in terms of x, and x,

In this case: the variables which have a unique solution are known as non-basic, whereas the one’s
which do not (x4, x5) are called basic



Eg: the system above simplifies to:

/100

1 1 8
So:x1=1+§x4—§x5; Xy =2——x4

1 1
3 3\
8 2|
15 3
1
15 3
2
_E.xs; .x3 =

X1

X2 1
X = 2
X4 -1

X5

w

2 1
—1+-x4—cx
574 375



LINEAR PROGRAMMING

CHAPTER 2: LINEAR PROGRAMMING

- The term programming means planning/logistics (not computing)

o) Used for : allocating limited resources among competing activities in optimal
way
o) Selecting the level of certain activities that compete for limited resources to
optimise some objective function
- Eg:
o Resource allocation
o Portfolio selection
o Transportation
o Agriculture
o Manufacturing

Standard LP Problem:

l. Maximise Z = ¢1x1 + CX3 + -+ CpXp

Il. Subject to:
i1 Qg2 . Qip X1 by
a x b
AR | A P
ami Amn Xn bm

1. With:xl,xZ, o Xn =0

OR:

Maximise Z = c"x
Subjectto Ax < b
Andx >0
l. Z is the objective function. It is a linear function of the decision variables
(1, %5, ..., Xy). The constants (cy, ¢y, ..., C,) are the cost coefficients. The increase in Z
for unit increase in xy, is cy.
Il. This part states the linear constraints of the problem. The coefficient matrix is the
constraint matrix. In standard LP problems, all elements of the resource vector
(by, by, ..., by,) are assumed to be non-negative.

Il. The final part of the LP problem is the positivity condition: of the decision variables

(X1, X, weer Xp)



Any x = (x4, x5, ..., X;,) that satisfy Il and Ill are feasible solutions, and lie in a closed region in the

decision space, called the feasible region: W. The decision space is always non-empty as (0,0, ...0) is

always feasible.

Any x not in the feasible region is infeasible.

A feasible solution of x which maximimes the objective function Z is the optimal solution. Denoted

*

X

As the objective function is Linear (in standard LP problems), the maximum and minimum of Z must
lie on the boundary of the feasible region.

Example of LP problem:

Resources (P,)
needed percent of

If x; is the number of white units

X, is the number of blue units:

Subject to:

And x1,x, =0

~ Maximise: Z = 3x, + 5x,

x1S4

3x1 +2x, <18

2x2 < 12

product
Product
“competing” sites white blue Amount of resources
available
RV, 1 0 4
RV, 3 2 18
RV, 0 2 12
Objective function Z 3 5
~ LP problem is:




X2

3x1 +2x, =18

6 (2,6)

Feasible Region

(4.3)

X1

To maximise:
Either:

1. Look at slope of contour lines of constant z - typically meets at corner points

Make equation x, = — %xl + %z: keeping z constant; then shift line up until you reach the

end:

- Will most likely be a point, but could meet a boundary if line is parallel to
boundary (in which case they are all the most optimal)

2. Compute value of Z at corner points

Notes on the feasible region:
1. Feasible region may not exist (inconsistent constraints, eg x, < 0)
2. Feasible region may be unbounded

Eg.

May be more than one optimal solution (eg optimal lies on a boundary):

Eg: Z = 6x4 + 4x,:, with 3x; + 2x, < 18

7 =(o-30)
(eo-2



Feasible Region

However- the MINIMUM will still exist

3. Feasible region is convex
- AsetRisconvexif, Vx € R, and scalars A € [0,1], z = Ax + (1 — 1)y satisfies

z € R. (if | take any 2 lines on the boundary, and draw a line between, then all
points on the line lie in the feasible region)

The Simplex Algorithm: (graphically)
1. |Initialisation: start at a FCP (feasible corner point), with objective function value Z.

2. Iteration Step: Move to an adjacent FCP with the best potential of Z increase
3. Stopping rule: Stop at FCP™ if its Z* is = the Z valuesof all its adjacent FCP’s.

Eg: Drug problem
in the drug problem above:

1. Startat F1|x1=0 withZ =0

X2=0
2.
- Moveto Fs| 2:2, as Z = 3x; + 5x, increases sharpest in x, direction (as 5 > 3) with

Z =30
- MovetoF, ((xq,x,) = (2,6); withZ = 36
- F, (43),Z =27
3. StopatF,; =(2,6):Z* =36

Corner points are intersections of constraints:

Constraints are hyperplanes in R™, solutions to a;x; + azx, + -+ a,x, = b

~in LP, a FCP needs n of (n + m) constaints in R™



Total number of corner points

Therefore, the total number of corner points is (m: n) corner points (but some are infeasible)

Algebraic Representations of Corner Points

For each constraint in the subject to; introduce a “slack variable”. Equal to the difference between
the LHS and RHS of the constraint:

At a corner point:

- nvariables are 0 (non basic variable)
- movariables are non zero (basic variables)

Eg:

X1S4‘; X3:4—x120
3x, + 2%, < 18; x4 = 18 — 3x, — 220, = 0

ZXZS:[Z, XS:].Z—ZXZZO

Now: the boundary of the feasible regions are:

X1 =Xy =++=x5=0
X3
Iy
I5 (o)
I Iy ()
X5 = 0 2 *
Fs
x, =0 x3=0
(4,3)
X1

F1 Xy = 0 Fz 4 \13

FCP = F, = F5 are feasible

I; = I are infeasible



Adjacent corner points
Two corner points are adjacent if they differ in exactly 1 non-basic variable (or, equivalenty, one
basic variable)

(so- in the example beflow: F; (0,0) is adjacent to F,(4,0) and also I5(6,0) and F5(0,6) and I5(0,9)
using this definition. BUT: to get to infeasible corner points, we must cross a feasible boundary)

- A corner point C is adjacent to ALL cornerpoints on the boundaries passing through C (not
just FCP)

Moving between CP’s
To move from one CP to an adjacent CP, ONE basic variable is replaced by a non-basic variable

We say a variable “enters” or “leaves” the basis

So in the Drug problem: F; = F5 = F, = F3
F;1(0,0,4,18,12) = F5 (0,6,4,6,0)

S0 x, enters the basis, and x5 left the basis

The simplex algorithm (algebraically)
Aim: Move from an FCP to an adjacent FCP with largest potential increase in the objective function
Z. Find theoretically the FCP which maximises Z (finds Z*)

Standard LP problem:

Maximise Z = ¢T

x
Subjectto: Ax < b (x e R";b > 0)
Withx = 0

1. Initialisation:
Choose a feasible solution

- Write the LP problem in tableu form:

A Xq X, Xy Xp1q Xpamm b
1 _Cl _CZ _Cn 0 0 O
0 aqq aqo 1 0 0 b,
0 ayq s 0 1 0 b,
0 Amq Ao 0 0 1 b,

Set decision variables (x4, x5, ... X,) = 0 and slack variables (X, 41, Xn42, ) Xnem) = (b1, b2, ... byy)
(Is feasible solution as b; > 0 so x,,,; > 0)
In Matrix form, this is represented at:

Maximise Z:



Matrix form of simplex:

Z
1 —cT or,,w] <l [0]
0column A I Xg b
€1
c
whereic=| * |;x= (%1, %5, ..., Xp); xs = slack variables
Cn
For Drug Problem
Z Xq X, X2 X4 X b
1 -3 =5 0 0 0 0
0 1 0 1 0 0 4
0 3 2 0 1 0 18
0 0 2 0 0 1 12

« initial values: (x;,%,, ... x5) = (0,0,4,18,12) (2 non basic (x, x,), 3 basic (x3 x4 Xs))

2. lteration step

We need a criteria for:

a) Which of the non-basic variables will enter the basis

b) Which of the basic variables will leave the basis.
(i.e.- which adjacent FCP we should move to)

Largest coefficient rule (entering basis):
a) Which of the non-basic variables should enter?

For Z = )i, ¢;x;; a good choice for which adjacent variable we should use is in the direction
with the greatest cost coefficient (c;) — this MIGHT yield the largest increase in Z (and so the
least number of steps); but it also could not (the only way we can tell is by calculating it)

So: increase the non basic variable x, = 0 to x, > 0; where ¢, = max{c;s}

Eg: for the drug problem:

Z = 3x4 + 5x,; move in the direction of x, (x, should enter the basis)

Rule for exiting basis:

b) Which of the basic variables should leave?

Take the variable x, which will become zero first upon increasing x,. (this finds the ‘immediate
neighbours’)

Eg:



RULE:

Graphically:

o x5 = 0is reached before x, = 0 on the boundary x; = 0 when varing

X2
Algebraically:
o We have x; = 0; and we’re varying x,
Constaints are:
X3 = 4:
2%y + x4 =18 - x4, = 18 — 2x,
2%y + x5 =12 > x5 = 12 — 2x,
So: if we vary x, > 0: x5 will become 0 before x, will (and x5 is
unaffected by x,) :
= SO x5 SHOULD LEAVE THE BASIS!!

bi . .. . .
Choose the x, such that — is minimised for i = ¢

QAie

Example of iteration: Drug problem

Basis VA X, X X3 X4 Xs b b;.
a2
Z 1 -3 -5 0 0 0 0 —
X3 0 1 0 1 0 0 4 -
X4 0 3 2 0 1 0 18 E —9
5=
Xs 0 0 2 0 0 1 12 2 —6
5=
-~ as 6 is min: choose x5 to leave rather than x,
Use Gaussian elimination to eliminate the x, column:
Basis Z Xy Xy X3 X4 Xs5 b bi.
iz
Z 1 -3 -5 0 0 0 0 -
X3 0 1 0 1 0 0 4 4
X4 0 3 0 0 1 -1 6 2
Xs 0 0 1 0 0 1 6 -
2

Min =2: so choose F, rather than I, (now Z is ixpressed in terms of x; and x5)

x, should enter the basis as it has the largest MODIFIED cost coefficient

(G1=-(=3)=3)

So: GJ elimination on x; column and x, row:




Basis Z Xq Xy X3 X4 Xs b
Z 1 0 0 0 1 § 36

2

3 3
X4 0 1 0 0 1 _1 2

3 3
X5 0 0 1 0 0 1 6

2

SO:

3
Z=—x4—§x5+36

3. Stopping rule:
When all modified cost coefficients ¢; < 0 (when all x entroes in the Z row are positive_; one cannot
move to an adjacent FCP without decreasing Z, and the tableu is optimal

Summary of standard LP form:
Maximise Z

Eachbh; = 0
Constraints < 0

Variables >

Possible problems

Tie breaking rule for cost coefficients:
Eg:

Basis

X5

RHS

20

Largest coefficient rule leads to an ambiguity: either choice will work (cannot really predict which is
better). It is not predictable which choice will give the potentially quickest solution.

Tied ratios:
Eg.
Consider the feasible problem: Z = 3x; + 5x,

withx; < 4
3x; +2x, <12



ZXZ < 12

X2
Xg = 0
6
X, =0
.x3 = O
X1 = 0
X1
x, =0 4
There are 3 x;s intersecting at each FCP
Algebraically:
VA X1 Xy X3 Xy X5 b Ratio:
1 =3 =5 0 0 0 — -
0 1 0 1 0 0 4 -
0 3 2 0 1 0 12 6
0 0 2 0 0 1 12 6

NOTICE: Equal ratio in Ratio column, so take either, x; or x5, no way to tell which is better.

No leaving variable:

(i.e- unbounded solution)

Graphically:



Eg:
Max Z = 3x; + 5x,

Such that:
—x1 + xz S 4‘
X1 — Xy <2
With x; = 0
Z Xq X X3 X4 b Ratio:
1 -3 =5 0 0 - -
0 1 1 1 0 4 4
0 1 -1 0 1 2 —
x5 leaves, x, enters
VA X1 X X3 Xy b Ratio:
1 —8 0 5 0 20 -
0 -1 1 1 0 4 -
0 0 0 1 1 6 -

No variable to leave basis!

~ solution is unbounded



Multiple optimal solutions:

Z is parallel to an x

Eg:
Maximise: z = 6x; + 4x,
X1 < 4,
3x1 +2x, <18
2x, <12
Xoy .
6 N
\\\ Z
X1 = 0 \\\
\\\\ xl
Xy = 0 4
Z = 36is optimal forany x, =0
Z X1 X X3 Xy X5 b Ratio:
1 -6 —4 0 0 0 0 —
0 1 1 0 0 4 4
0 3 2 0 1 18 6
0 0 0 1 12 6
A X1 Xy X3 X4 X5 b Ratio:
1 0 —4 6 0 0 24 -
0 1 1 0 0 4 —
0 0 2 -3 1 6 3
0 0 0 1 12 6
A X1 Xy X3 X4 X5 b Ratio:
1 0 0 0 2 0 36
0 1 1 0 0 4
0 0 1 _E 1 0 3
2 2
0 3 -1 1 6




=~ Optimal as all Z is positive:

Z=36-2x,

~ Optimal solution for x, = 0:

Subbing in x; = t:

Solving for t:

THEREFORE:

3
.'.x1=4—t;x2=3+Et;x5=6—3t

St Xy, X9, x5 = 0

~t €[0,2]
% 4 —3t
*2 3+t
nx=|x|= t2 with t € [0,2]
Xg 0
s 6— 3t

Assigne to each optimal non-basic variable with a zero modified cost coefficient an arbitrary

parameter t;

Summary of the Simplex algorithm for STANDARD LP problems:

0. Check LP problem is in standard form

=>» Maximisation problem

= Check thateachb; =0

=>» Constraints are all < (ie. ax + bx, + - < b;)
=>» Positivity constraints x; = 0

- Modify each one that does not follow

1. For each < constraint, introduce the slack variable x;,,,,, = 0

2. Astheinitial feasible corner point solution: Set all decision variables (original set of variables
problem is formulated in) to 0

3. At each iteration:

a.
b.

C.

The entering basic variable has the most negative cost coefficient in the Z row
. . . . . b; b;
The leaving basic variable x; corresponds to the row i, such that m_lna—‘ = a—" for
L ij igJ
a;; > 0, where j is the index corresponding to the entering basic variable.

Use Gauss-Jordan elimination to reduce a; ; = 1, a;; = 0, for i # i

4. Repeat step 3 above until all modified cost coefficients in the Z row are = 0, then stop and
read off the optimal solution



Efficiency of Simplex algorithm:
Empirical evidence indicates that for m constraints, the simplex algorithm takes approximates
1.5m — 2m iterations to converge to optimal solution.

Klee-Mitty problem:
Worst possible convergence of simplex algorithm: traverses all FCP to come to the answer in 2™ — 1
iterations

Adapting the simplex algorithm to non-standard problems:

Minimising the objective function:

To minimise: Z = }}; ¢;x;, define a new objective function:

2=-Z
Then:
minZ = —maxZ
General minimisation:
For f: R" - R,
min  f(xq, %y, ., xp) = — max [—f(x1, X2, .., Xp)]
X1,X2,.0Xn X1,X2,..Xn

Negative resource elements:
In the standard LP problem, we required all resource elements b; to be non-negative.

Suppose that b; = —b < 0.i.e. a;x; + azx; + - < —b
This is equivalent to:
—a1x1 - azxz _ e 2 b

— So we can assume a resource element is always non negative. IF we can modify the simplex
algorithm to include > constaints.

Greater than or equal to constrains.
If: aixq + arX, + e > b > 0

Introduce a surplus variable x,,,1 = 0 such that

a1X1 + axxy + o+ apxy —Xpy1 = b

Negative decision variable:
If x;, < 0:introduce a new variable X, = —x, thenx, <0< %, >0

Decision variable = k:
Ifx >k > 0;introducex =x—k >0



Unrestricted Decision variable:
If x,, is unrestricted in sign, introduce two new variables £, > 0 AND X, = 0, and let xj, = £} — X

Equality constraints:

al

x=aqx;+ax;++a,x,=b=20
Several approaches:

- Eliminate a variable: and the equality constraints will disappear

- Usethefactthata’™h=0<=a’b>0anda’b <0
- Use an artificial variable

Finding an initial FCP solution
Finding and initial FCP solution can be as hard as finding the optimal solution itself.

- Recall for standard LP problem: maxZ = ¢Tx|Ax < b,withx > 0
o To get an initial FCP solution,we introduce slack variables x; > 0. We
setx=0andx, >0

This will fail if there is an equality of = constraint in a non standard LP problem

1) a’x=b:x=0- a’x =0 # b. So doesn’t work
2) alx>b>0:x=0-0>b > 0.Doesn't work

Eg:

maxZ = 3x; + 5x,
withx; <4

3xy +2x, > 18
2x, <12

With x1,x5,x3 = 0

Introduce slack variables: x5, and x5 and a surplus variable x,.: so the constraints become

x1+X3=4
le+2xZ_.x4 = 18
2%y + x5 =12

Stragetry is to introduce an “artificial variable” X, (bar indicates artificial),

Note on = or = constraints for artificial variables X,
- We introduce an artificial variable for each = or = constraint, on top of the
surplus variable (which is has a negative coefficient)



The constraints become:

x1+x3=4
2x1+2x2_X4_+f6:18
2%y + x5 =12

with x;6 = 0
Our initial FCP is given by setting:

Xdecision = 0 = X1, =0
Xsurplus = 0-x,=0
Xsiack = RHS

Xartificial = RHS

(note: so the —x, + Xz = (0) + 18 = 18) so it holds

Note: we do not recover the initial > constraint unless X — 0

Problem to encounter: Lemma
Consider the LP problem:

(1)
max ¢’ x
subjecttoAx =b
x=0

Then:

(2)
Ax+z = b (if z is the vector of artificial variables)
~x,z=0

Lemma:

The LP problem (1) is feasible if and only if the optimal value of the LP problem (2) is achieved if z =
0 in the final step

PROOF of Lemma:
=If x* is a feasible solution of (1), then (x*, 0) is a feasible solution of the LP problem 2, and
therefore is optimal. Soz = 0

& if, on the oter hand, the optimal value of minimising the Y7, z; is zero; with solution of (2) being
(x*,0) and thus x* is a feasible solution Ax* = b of (1).

Example of non standard LP:

maxZ = 3x; + 5x,
Subject to:

x1S4



3x1 +2x, > 18
ZXZ < 12
with xq,x, = 0

-'-x1+X3=4
3x1 +2x; — x4 + % = 18
2x2+x5=12

with X155, fé = 0

~ first FCP:xy = x, = x4 = 0;x5 = 12; X5 = 18

Two Phase Simplex algorithm:

We can find an initial basic feasible solution to the non standard LP problem:

maxZ = 3x{ + 5x,
Subject to:
X1 <4
3x1 +2x, =18

2x, <12
with x;,x, =0

By casting as the following:

-‘-x1+x3=4
3x1+2x2_X4+x_6=18
2%y + x5 =12

with X155, 3?6 =0

s first FCP:xq = x, = x4 = 0;x5 = 12; X5 = 18

Eg: if

x1+x2=2
2x1+x221

We then have:

x1+x2—x3=2
2x1+x2—x4+f5=1



