MATH2970 optimisation and financial maths lecture notes

Georg Gottwald: georg.gottwald@sydney.edu.au

Contents

CHAPTER 1: OPTIMISING DIFFERENTIABLE FUNCTIONS	5
Eg: Minimising Surface area of can	5
Mathematical optimisation:	5
Optimisation of differentiable functions of one variable	5
Global minimum and maximum	6
Revision of solving linear equations:	6
Pivot operation algorithm:	6
Transformation of linear functions with Gaussian Jordan elimination	7
CHAPTER 2: LINEAR PROGRAMMING	9
Standard LP Problem:	9
To maximise:	11
Notes on the feasible region:	11
The Simplex Algorithm: (graphically)	12
Total number of corner points	13
Algebraic Representations of Corner Points	13
Eg:	13
Adjacent corner points	14
Moving between CP's	14
The simplex algorithm (algebraically)	14
Standard LP problem:	14
Summary of standard LP form:	17
Possible problems	17
Tie breaking rule for cost coefficients:	17
Tied ratios:	17
No leaving variable:	18
Multiple optimal solutions:	20
Summary of the Simplex algorithm for STANDARD LP problems:	21
Efficiency of Simplex algorithm:	22
Klee-Mitty problem:	22
Adapting the simplex algorithm to non-standard problems:	22

	Minimising the objective function:	22
	Negative resource elements:	22
	Greater than or equal to constrains.	22
	Negative decision variable:	22
	Decision variable $\geq k$:	22
	Unrestricted Decision variable:	23
	Equality constraints:	23
F	inding an initial FCP solution	23
	Problem to encounter: Lemma	24
	Two Phase Simplex algorithm:	25
	Big <i>M</i> method:	27
Т	he Dual Problem:	27
	Reconsidering the drug problem:	27
	General Dual problem:	28
	General LP Problem and its dual:	30
	Dimensional analysis of dual problem:	31
	Fundamental duality theorem:	32
СН	APTER 3: NONLINEAR OPTIMISATION WITHOUT CONSTRAINTS	34
Т	aylor Theorem:	34
	Taylor theorem for $D \in \mathbb{R}N$	35
	For $n=2$ terms:	36
	Q function:	36
	Q function:	37
СН	APTER 4: NONLINEAR OPTIMISATION WITH CONSTRAINTS	38
L	agrangian ${\cal L}$	38
	Example:	39
N	Nonlinear optimisation with inequality constraints:	39
	Solving the lagragian finds the optimal	40
	cases that can occur:	40
k	Karush-Kuhn-Tucker conditions:	41
	Down variable:	43
	In variable:	43
	Up variable:	43
E	Bounded variable constraints:	43
СН	APTER 5: PROBABILITY REVIEW:	45
F	Probability axioms	45

Sample Space Ω	45
Events	45
Random variables X:	45
Simple probabilities	46
Disjoint events:	46
Conditional probability	46
Intersection events:	46
Expected value	46
E(X) as a linear operator	46
Function of $p = f(x)$	47
Expectation of independent evernts:	47
Some Expected values of different probability distributions:	47
Variance:	47
$\sigma 2 = 0$	47
Standard Deviation:	47
VX = EX2 - EX2	48
Theorems for V(X):	48
Continuous Random variables:	48
Probability density function (PDF):	48
Cumulative distribution function: CDF	49
Covariance and correlation:	49
Covariance definition:	49
Properties of covariance:	49
Correlation function:	50
Linear regression:	50
CHAPTER 6 RISKY SECURITIES AND UTILITY THEORY	52
Decisions and uncertainty:	52
Securities:	52
Principle of expected return	52
Utility theory:	53
Utility function:	53
Modal (logarithmic) utility function:	53
Principle of expected utility	54
Pricing risky securities:	54
Theorem on utility and linear transfomrations	55
Utility solution to st Petersburg paradox:	56

Risk aversion:	56
Theorem of risk aversion:	57
Risk attitutdes:	58
Certainty equivalence and risk premium:	58
Insurance:	59
Maximum premium at:	60
Critiscisms of utility theory:	60
Chapter 7 Portfolio theory:	61
Mean variance portolio theory (MVPT)	61
Assumptions:	61
Portfolio basics:	62
Feasible set:	64
Sector constraints:	64
Bullet/batwing feasible regions	64
Markowitz criterion:	66
Two asset portfolio	68
ho=1: perfect correlation	69
Unrestricted- n asset portfolios	69
Critical line:	70
Efficient frontier:	70
Restricted n asset portfolios	72
Δim:	73

OPTIMISING DIFFERENTIALE FUNCTIONS

CHAPTER 1: OPTIMISING DIFFERENTIABLE FUNCTIONS

Examples: physics, chemical reactions, scheduling, manufacturing.

Eg: Minimising Surface area of can Start by modelling the can as a cylinder:

$$V = \pi r^{2}h = 375mL$$

$$S = 2\pi r + 2\pi r^{2}$$

$$h = \frac{V}{\pi r^{2}}$$

$$\Rightarrow S(r) = \frac{2\pi}{r} + 2\pi r^{2}$$

$$\therefore differentiate ect$$

$$\therefore r = \left(\frac{V_0}{r\pi}\right)^{\frac{1}{3}}$$

But: this gives $r \approx 3.91$; h = 7.82. So why is this different to the ACTUAL size of a can?

Modelling in incorrect (eg- S has no width, indentation at bottom ect)

$$\begin{aligned} &industrial\ paramenters:\ d_{side} = 0.0104cm\\ &d_{top} = 0.0236cm\\ &d_{bottom} = 0.0203cm \end{aligned}$$

$$\begin{split} & \div \bar{S}(h,r) \ (not \ an \ area) = 2\pi r h d_{side} + \pi r^2 d_{bottom} + \pi r^2 d_{top} \\ & \div \bar{S}(r) = 2\pi r \left(\frac{V}{\pi r^2}\right) d_{side} + \pi r^2 \left(d_{bottom} + d_{top}\right) = \frac{2V}{r} d_{side} + \pi r^2 \left(d_{bottom} + d_{side}\right) \\ & \frac{d\bar{S}}{dr} = -\frac{2V}{r^2} d_{side} + 2\pi r (d_{bottom} + d_{side}) = 0 \end{split}$$

Mathematical optimisation:

Given an **objective function**, $f: \mathbb{R}^n \to \mathbb{R}$ (scalar function)

And a **feasible region**: Ψ

And **optimisation problem** is the problem of finding an $x^* \in \mathbb{R}^n$ that solves:

$$\min_{x \in \mathbb{R}^n} f(x) \mid x \in \Psi \text{ or } \max_{x \in \mathbb{R}^n} f(x) \mid x \in \Psi$$

Optimisation of differentiable functions of one variable

Some scenarios:

$$f(x)$$
 is constant for $x \in [a, b]$
 \Rightarrow all $x \in [a, b]$ optimised

f(x) is linear for $x \in [a, b]$ \therefore optimised points on boundary

f(x) has unique global extremity in interior:

f(x) has multiple local maximum or minimum must use computers and find an algorithm to solve it

Global minimum and maximum

Definition: a point x^* is a **global minimum** if $f(x^*) \le f(x) \ \forall x \in \Psi$

Definition: a point x^* is a **local minimum** if there is a neighbourhood N of $x^*|f(x^*) \le f(x) \forall x \in N$

Identifying local extremities of f(x)

- 1. First derivative test $f'(x^*) = 0$ (could be min, max or inflexion), only necessary condition for the existence of optimal
- 2. Sufficient condition can be established using higher order derivatives:
 - $f'(x^*) = 0$; $f''(x^*) < 0$: local maximum But: eg this would not mind max of $-x^4$
 - If $f'(x^*) = f''(x^*) = \dots = f^{2m-1}(x^*) = 0$ and $f^{2m}(x^*) < (>)0, x^*$ is maximum(minimum)
 - If $f^1(x^*) = \cdots = f^{2m}(x^*) = 0$, and $f^{2m-1}(x^*) \neq 0$, then x^* is a point of inflection

Finding global extremity:

Now we can test for global extremity:

$$\min\{f(a), f(b), f(x_1^*), f(x_2^*), \dots, f(x_k^*)\}\$$

(or max)

Revision of solving linear equations:

Eg:

$$Ax = b$$
$$x = A^{-1}b$$

Pivot operation algorithm:

Eg solve:

$$\begin{pmatrix} 1 & -1 & 1 \\ 2 & 1 & -1 \\ -1 & 2 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -2 \\ 5 \\ 0 \end{pmatrix}$$

- 1. Decide on a **pivot element**, $a_{ij} \neq 0$
- 2. Divide row i by $a_{ij} \neq 0$ (in our lecture, a_{ij} are large enough to not amplify errors (that it may in a computer))
- 3. Transform all other rows of a_{kj} $(k \neq i)$ by adding suitable multiples of row i

Eg: in tableaux form

x_1	x_2	χ_3	b
1	-1	1	-2
2	1	-1	5
-1	2	3	0

x_1	x_2	χ_3	b
1	-1	1	-2
0	3	-3	9
0	1	4	-2

x_1	x_2	χ_3	b
1	0	5	-4
0	0	-15	15
0	1	4	-2

$$x_3 = -1; x_2 = -2 - 4(-1) = 2; x_1 = -4 - 5(-1) = 1$$

$$\therefore \mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

Transformation of linear functions with Gaussian Jordan elimination Basic/nonbasic variables

If we were given:

$$\begin{pmatrix} 1 & -1 & 1 & -1 & 0 \\ 2 & 1 & -1 & 0 & 1 \\ -1 & 2 & 3 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} -2 \\ 5 \\ 0 \end{pmatrix}$$

As this system has infinite solutions, we can simplify a solution $Z = c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4 + c_5x_5 + c_0$ into the form:

$$Z = Ax_4 + Bx_5 + C$$

(as x_1 , x_2 and x_3 can be expressed in terms of x_4 and x_4

In this case: the variables which have a unique solution are known as **non-basic**, whereas the one's which do not (x_4, x_5) are called **basic**

Eg: the system above simplifies to:

$$\begin{pmatrix} 1 & 0 & 0 & -\frac{1}{3} & \frac{1}{3} \\ 0 & 1 & 0 & \frac{8}{15} & \frac{2}{3} \\ 0 & 0 & 1 & -\frac{2}{15} & \frac{1}{3} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

So:
$$x_1 = 1 + \frac{1}{3}x_4 - \frac{1}{3}x_5$$
; $x_2 = 2 - \frac{8}{15}x_4 - \frac{2}{3}x_5$; $x_3 = -1 + \frac{2}{5}x_4 - \frac{1}{3}x_5$

LINEAR PROGRAMMING

CHAPTER 2: LINEAR PROGRAMMING

- The term **programming** means planning/logistics (not computing)
 - Used for : allocating limited resources among competing activities in optimal way
 - Selecting the level of certain activities that compete for limited resources to optimise some objective function
 - Eg:
- o Resource allocation
- o Portfolio selection
- Transportation
- o Agriculture
- Manufacturing

Standard LP Problem:

- I. Maximise $Z = c_1x_1 + c_2x_2 + \cdots + c_nx_n$
- II. Subject to:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \dots & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & \dots & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \leq \begin{pmatrix} b_1 \\ b_2 \\ \dots \\ b_m \end{pmatrix}$$

III. With: $x_1, x_2, ... x_n \ge 0$

OR:

Maximise $Z = c^T x$

Subject to $Ax \leq b$

And $x \ge 0$

- I. Z is the **objective function.** It is a linear function of the **decision variables** $(x_1,x_2,...,x_n)$. The constants $(c_1,c_2,...,c_n)$ are the **cost coefficients**. The increase in Z for unit increase in x_k is c_k .
- II. This part states the **linear constraints** of the problem. The coefficient matrix is the **constraint matrix.** In standard LP problems, all elements of the **resource vector** $(b_1, b_2, ..., b_n)$ are assumed to be non-negative.
- III. The final part of the LP problem is the **positivity condition**: of the decision variables $(x_1, x_2, ..., x_n)$

Any $\mathbf{x}=(x_1,x_2,...,x_n)$ that satisfy II and III are **feasible solutions**, and lie in a closed region in the decision space, called the **feasible region**: Ψ . The decision space is always non-empty as (0,0,...0) is always feasible.

Any x not in the feasible region is **infeasible**.

A feasible solution of x which maximimes the objective function Z is the **optimal solution.** Denoted x^* .

As the objective function is Linear (in standard LP problems), the maximum and minimum of Z must lie on the boundary of the feasible region.

Example of LP problem:

	Resources (P ₄) needed percent of product		
	Product		
"competing" sites	white	blue	Amount of resources available
RV_1	1	0	4
RV_2	3	2	18
RV_3	0	2	12
Objective function Z	3	5	

 \therefore LP problem is:

If x_1 is the number of white units

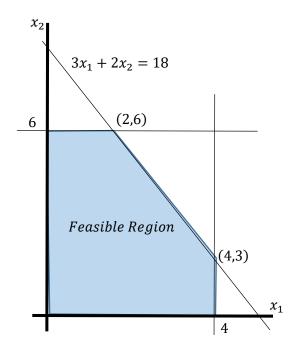
 x_2 is the number of blue units:

$$\therefore$$
 Maximise: $Z = 3x_2 + 5x_2$

Subject to:

$$x_1 \le 4 3x_1 + 2x_2 \le 18 2x_2 \le 12$$

And $x_1, x_2 \ge 0$



To maximise:

Either:

- 1. Look at slope of contour lines of constant z o typically meets at corner points Make equation $x_2 = -\frac{3}{5}x_1 + \frac{1}{5}z$: keeping z constant; then shift line up until you reach the end:
 - Will most likely be a point, but could meet a boundary if line is parallel to boundary (in which case they are all the most optimal)
- 2. Compute value of Z at corner points

Notes on the feasible region:

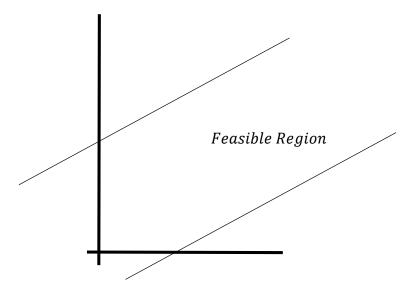
- 1. Feasible region may not exist (inconsistent constraints, eg $x_2 < 0$)
- 2. Feasible region may be unbounded

Eg.

May be more than one optimal solution (eg optimal lies on a boundary):

Eg:
$$Z = 6x_1 + 4x_2$$
:, with $3x_1 + 2x_2 \le 18$

$$Z^* = \left(t, 9 - \frac{3}{2}t\right)$$



However- the MINIMUM will still exist

- 3. Feasible region is convex
 - A set R is convex if, $\forall x \in R$, and scalars $\lambda \in [0,1]$, $z = \lambda x + (1 \lambda)y$ satisfies $z \in R$. (if I take any 2 lines on the boundary, and draw a line between, then all points on the line lie in the feasible region)

The Simplex Algorithm: (graphically)

- **1.** Initialisation: start at a **FCP** (feasible corner point), with objective function value Z.
- 2. Iteration Step: Move to an adjacent FCP with the best potential of Z increase
- **3.** Stopping rule: Stop at FCP^* if its Z^* is \geq the Z values of all its adjacent FCP's.

Eg: Drug problem

in the drug problem above:

- 1. Start at $F_{1|_{\chi_{2}=0}^{\chi_{1}=0}}$ with Z=0
- 2.
- Move to $F_5|_{x_2=6}^{x_1=0}$, as $Z=3x_1+5x_2$ increases sharpest in x_2 direction (as 5>3) with Z=30
- Move to F_4 ((x_1, x_2) = (2,6); with Z = 36
- F_5 , (4,3), Z = 27
- 3. Stop at $F_4^* = (2,6)$: $Z^* = 36$

Corner points are intersections of constraints:

Constraints are hyperplanes in \mathbb{R}^n , solutions to $a_1x_1 + a_2x_2 + \cdots + a_nx_n = b$

 \therefore in LP, a FCP needs n of (n+m) constaints in \mathbb{R}^n

Total number of corner points

Therefore, the total number of corner points is $\binom{m+n}{n}$ corner points (but some are infeasible)

Algebraic Representations of Corner Points

For each constraint in the subject to; introduce a "slack variable". Equal to the difference between the LHS and RHS of the constraint:

At a corner point:

- *n* variables are 0 (non basic variable)
- *m* variables are non zero (basic variables)

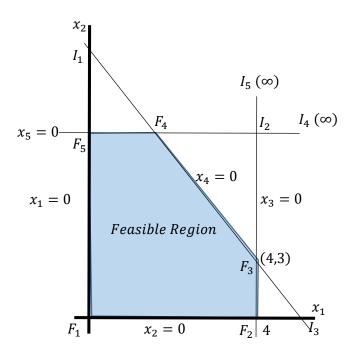
Eg:

If:

$$x_1 \le 4$$
; $x_3 = 4 - x_1 \ge 0$
 $3x_1 + 2x_2 \le 18$; $x_4 = 18 - 3x_2 - 2x_2 \ge 0$
 $2x_2 \le 12$; $x_5 = 12 - 2x_2 \ge 0$

Now: the boundary of the feasible regions are:

$$x_1 = x_2 = \dots = x_5 = 0$$



$$FCP = F_1 \rightarrow F_5 \ are \ feasible$$

 $I_1 \rightarrow I_5 \ are \ infeasible$

Adjacent corner points

Two corner points are **adjacent** if they differ in exactly 1 non-basic variable (or, equivalenty, one basic variable)

(so- in the example beflow: $F_1(0,0)$ is adjacent to $F_2(4,0)$ and also $I_3(6,0)$ and $F_5(0,6)$ and $F_5(0$

- A corner point C is adjacent to ALL cornerpoints on the boundaries passing through C (not just FCP)

Moving between CP's

To move from one CP to an adjacent CP, ONE basic variable is replaced by a non-basic variable

We say a variable "enters" or "leaves" the basis

So in the Drug problem: $F_1 \rightarrow F_5 \rightarrow F_4 \rightarrow F_3$

$$F_1|(0,0,4,18,12) \to F_5 (0,6,4,6,0)$$

so x_2 enters the basis, and x_5 left the basis

The simplex algorithm (algebraically)

Aim: Move from an FCP to an adjacent FCP with largest potential increase in the objective function Z. Find theoretically the FCP which maximises Z (finds Z^*)

Standard LP problem:

Maximise $Z = c^T x$

Subject to: $Ax \leq b \ (x \in \mathbb{R}^n; b > 0)$

With $x \ge 0$

1. Initialisation:

Choose a feasible solution

Write the LP problem in tableu form:

Z	x_1	x_2	 x_n	x_{n+1}	 x_{n+m}	b
1	$-c_1$	$-c_2$	 $-c_n$	0	0	0
0	a_{11}	a_{12}	 1	0	 0	b_1
0	a_{21}	a_{22}	 0	1	 0	b_2
0	a_{m1}	a_{m2}	 0	0	 1	b_m

Set decision variables $(x_1, x_2, \dots x_n) = \mathbf{0}$ and slack variables $(x_{n+1}, x_{n+2}, \dots, x_{n+m}) = (b_1, b_2, \dots b_m)$

(Is feasible solution as $b_i > 0$ so $x_{n+i} > 0$)

In Matrix form, this is represented at:

Maximise *Z*:

Matrix form of simplex:

$$\begin{bmatrix} 1 & -c^T & \mathbf{0}_{row} \\ \mathbf{0}_{column} & A & I \end{bmatrix} \begin{bmatrix} Z \\ x \\ x_S \end{bmatrix} = \begin{bmatrix} 0 \\ b \end{bmatrix}$$

$$where: \mathbf{c} = \begin{pmatrix} c_1 \\ c_2 \\ \dots \\ c_n \end{pmatrix}; \mathbf{x} = (x_1, x_2, \dots, x_n); \mathbf{x}_s = slack \ variables$$

For Drug Problem

Z	x_1	x_2	x_3	x_4	x_5	b
1	-3	-5	0	0	0	0
0	1	0	1	0	0	4
0	3	2	0	1	0	18
0	0	2	0	0	1	12

: initial values: $(x_1, x_2, ... x_5) = (0,0,4,18,12) (2 \text{ non basic } (x_1, x_2), 3 \text{ basic } (x_3, x_4, x_5))$

2. Iteration step

We need a criteria for:

- a) Which of the non-basic variables will enter the basis
- b) Which of the basic variables will leave the basis.

(i.e.- which adjacent FCP we should move to)

Largest coefficient rule (entering basis):

a) Which of the non-basic variables should enter?

For $Z = \sum_{i=1}^{n} c_i x_i$; a good choice for which adjacent variable we should use is in the direction with the greatest cost coefficient (c_i) – this MIGHT yield the largest increase in Z (and so the least number of steps); but it also could not (the only way we can tell is by calculating it)

So: increase the non basic variable $x_e = 0$ to $x_e > 0$; where $c_e = \max\{c_i's\}$

Eg: for the drug problem:

 $Z = 3x_1 + 5x_2$; move in the direction of x_2 (x_2 should enter the basis)

Rule for exiting basis:

b) Which of the basic variables should leave?

Take the variable x_{ℓ} which will become zero first upon increasing x_{e} . (this finds the 'immediate neighbours')

Eg:

- Graphically:
 - o $x_5 = 0$ is reached before $x_4 = 0$ on the boundary $x_1 = 0$ when varing x_2
- Algebraically:
 - We have $x_1 = 0$; and we're varying x_2 Constaints are:

$$x_3 = 4$$
:
 $2x_2 + x_4 = 18 \rightarrow x_4 = 18 - 2x_2$
 $2x_2 + x_5 = 12 \rightarrow x_5 = 12 - 2x_2$

So: if we vary $x_2 > 0$: x_5 will become 0 before x_4 will (and x_3 is unaffected by x_2):

• SO x_5 SHOULD LEAVE THE BASIS!!

RULE:

Choose the x_ℓ such that $\frac{b_i}{a_{ie}}$ is minimised for $i=\ell$

Example of iteration: Drug problem

Basis	Z	x_1	x_2	x_3	x_4	x_5	b	b_i
								a_{i2}
Z	1	-3	-5	0	0	0	0	_
x_3	0	1	0	1	0	0	4	_
x_4	0	3	2	0	1	0	18	$\frac{18}{2} = 9$
x_5	0	0	2	0	0	1	12	$\frac{12}{2} = 6$

 \therefore as 6 is min: choose x_5 to leave rather than x_4

Use Gaussian elimination to eliminate the x_2 column:

Basis	Z	x_1	x_2	x_3	x_4	x_5	b	b_i
								a_{i2}
Z	1	-3	-5	0	0	0	0	_
x_3	0	1	0	1	0	0	4	4
x_4	0	3	0	0	1	-1	6	2
x_5	0	0	1	0	0	1	6	_
						$\frac{\overline{2}}{2}$		

Min =2: so choose F_4 rather than I_2 (now Z is ixpressed in terms of x_1 and x_5)

- x_1 should enter the basis as it has the largest MODIFIED cost coefficient $(\overline{c_1} = -(-3) = 3)$

So: GJ elimination on x_1 column and x_4 row:

Basis	Z	x_1	x_2	x_3	x_4	x_5	b
Z	1	0	0	0	1	$\frac{3}{2}$	36
x_3	0	0	0	1	$-\frac{1}{3}$	$\frac{1}{3}$	2
x_4	0	1	0	0	$\frac{1}{3}$	$-\frac{1}{3}$	2
x_5	0	0	1	0	0	$\frac{1}{2}$	6

SO:

$$Z = -x_4 - \frac{3}{2}x_5 + 36$$

3. Stopping rule:

When all modified cost coefficients $\overline{c_i} \le 0$ (when all x entroes in the Z row are positive_; one cannot move to an adjacent FCP without decreasing Z, and the tableu is optimal

Summary of standard LP form:

Maximise Z

Each $b_i \geq 0$

Constraints ≤ 0

Variables ≥

Possible problems

Tie breaking rule for cost coefficients:

Eg:

Basis	Z	x_1	x_2	x_3	x_4	x_5	RHS
Z	1	0	-3	-3	0	0	20

Largest coefficient rule leads to an ambiguity: either choice will work (cannot really predict which is better). It is not predictable which choice will give the potentially quickest solution.

Tied ratios:

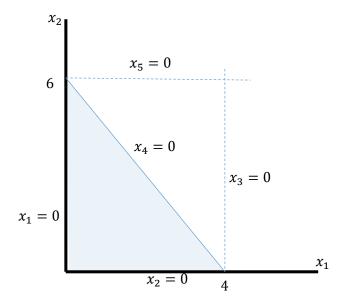
Eg.

Consider the feasible problem:
$$Z=3x_1+5x_2$$

$$with \ x_1 \leq 4$$

$$3x_1+2x_2 \leq 12$$

$$2x_2 \le 12$$



There are 3 $x_i^\prime s$ intersecting at each FCP

Algebraically:

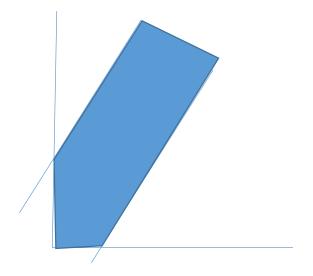
Z	x_1	x_2	x_3	x_4	x_5	b	Ratio:
1	-3	-5	0	0	0	-	-
0	1	0	1	0	0	4	-
0	3	2	0	1	0	12	6
0	0	2	0	0	1	12	6

NOTICE: Equal ratio in Ratio column, so take either, x_1 or x_2 , no way to tell which is better.

No leaving variable:

(i.e- unbounded solution)

Graphically:



Eg:

$$\operatorname{Max} Z = 3x_1 + 5x_2$$

Such that:

$$-x_1 + x_2 \le 4$$

$$x_1 - x_2 \le 2$$

With $x_i \geq 0$

Z	x_1	x_2	x_3	χ_4	b	Ratio:
1	-3	-5	0	0	_	_
0	1	1	1	0	4	4
0	1	-1	0	1	2	_

x_3 leaves, x_2 enters

Z	x_1	x_2	x_3	x_4	b	Ratio:
1	-8	0	5	0	20	_
0	-1	1	1	0	4	_
0	0	0	1	1	6	_

No variable to leave basis!

∴ solution is unbounded

Multiple optimal solutions:

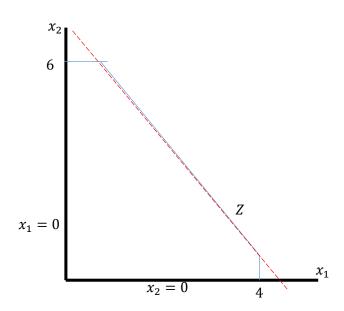
Z is parallel to an x

Eg:

Maximise:
$$z = 6x_1 + 4x_2$$

$$x_1 \le 4;$$

 $3x_1 + 2x_2 \le 18$
 $2x_2 \le 12$



Z=36 is optimal for any $x_4=0$

Z	x_1	x_2	x_3	x_4	x_5	b	Ratio:
1	-6	-4	0	0	0	0	_
0	1	0	1	0	0	4	4
0	3	2	0	1	0	18	6
0	0	2	0	0	1	12	6

Z	x_1	x_2	x_3	x_4	x_5	b	Ratio:
1	0	-4	6	0	0	24	_
0	1	0	1	0	0	4	_
0	0	2	-3	1	0	6	3
0	0	2	0	0	1	12	6

Z	x_1	x_2	x_3	x_4	x_5	b	Ratio:
1	0	0	0	2	0	36	
0	1	0	1	0	0	4	
0	0	1	3	1	0	3	
			$-\frac{1}{2}$	$\overline{2}$			
0	0	0	3	-1	1	6	

 \therefore Optimal as all Z is positive:

$$Z = 36 - 2x_4$$

 \therefore Optimal solution for $x_4 = 0$:

Subbing in $x_3 = t$:

$$\therefore x_1 = 4 - t; x_2 = 3 + \frac{3}{2}t; x_5 = 6 - 3t$$
$$\therefore t, x_1, x_2, x_5 \ge 0$$

Solving for *t*:

$$t \in [0,2]$$

$$\therefore x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 4 - t \\ 3 + \frac{3}{2}t \\ t \\ 0 \\ 6 - 3t \end{pmatrix} \text{ with } t \in [0,2]$$

THEREFORE:

Assigne to each optimal non-basic variable with a zero modified cost coefficient an arbitrary parameter t_i

Summary of the Simplex algorithm for **STANDARD** LP problems:

- 0. Check LP problem is in standard form
 - → Maximisation problem
 - \rightarrow Check that each $b_i \geq 0$
 - \rightarrow Constraints are all \leq (ie. $ax + bx_2 + \cdots \leq b_i$)
 - \rightarrow Positivity constraints $x_i \ge 0$
 - Modify each one that does not follow
- 1. For each \leq constraint, introduce the **slack variable** $x_{n+m} \geq 0$
- 2. As the initial feasible corner point solution: Set all decision variables (original set of variables problem is formulated in) to 0
- 3. At each iteration:
 - a. The entering basic variable has the most negative cost coefficient in the $\it Z$ row
 - b. The leaving basic variable x_i corresponds to the row i_0 such that $\min_i \frac{b_i}{a_{ij}} = \frac{b_{i_0}}{a_{i_0j}}$ for $a_{ij} > 0$, where j is the index corresponding to the entering basic variable.
 - c. Use Gauss-Jordan elimination to reduce $a_{i_0j}=1$, $a_{ij}=0$, for $i
 eq i_0$
- 4. Repeat step 3 above until all modified cost coefficients in the Z row are ≥ 0 , then stop and read off the optimal solution

Efficiency of Simplex algorithm:

Empirical evidence indicates that for m constraints, the simplex algorithm takes approximates 1.5m-2m iterations to converge to optimal solution.

Klee-Mitty problem:

Worst possible convergence of simplex algorithm: traverses all FCP to come to the answer in 2^m-1 iterations

Adapting the simplex algorithm to non-standard problems:

Minimising the objective function:

To minimise: $Z = \sum_i c_i x_i$, define a new objective function:

$$\hat{Z} = -Z$$

Then:

$$\min Z = -\max \hat{Z}$$

General minimisation:

For $f: \mathbb{R}^n \to \mathbb{R}$,

$$\min_{x_1, x_2, \dots, x_n} f(x_1, x_2, \dots, x_n) = -\max_{x_1, x_2, \dots, x_n} [-f(x_1, x_2, \dots, x_n)]$$

Negative resource elements:

In the standard LP problem, we required all resource elements b_i to be non-negative.

Suppose that $b_i = -b < 0$. i.e. $a_1x_1 + a_2x_2 + \cdots \le -b$

This is equivalent to:

$$-a_1x_1 - a_2x_2 - \dots \ge b$$

 \rightarrow So we can assume a resource element is always non negative. IF we can modify the simplex algorithm to include \geq constaints.

Greater than or equal to constrains.

If:
$$a_1x_1 + a_2x_2 + \dots \ge b \ge 0$$

Introduce a surplus variable $x_{n+1} \ge 0$ such that

$$a_1x_1 + a_2x_2 + \dots + a_nx_n - x_{n+1} = b$$

Negative decision variable:

If $x_k \leq 0$: introduce a new variable $\hat{x}_k = -x_k$, then $x_k \leq 0 \iff \hat{x}_k > 0$

Decision variable $\geq k$:

If $x \ge k > 0$; introduce $\hat{x} = x - k \ge 0$

Unrestricted Decision variable:

If x_k is unrestricted in sign, introduce **two** new variables $\hat{x}_k \geq 0$ AND $\hat{x}_k \geq 0$, and let $x_k = \hat{x}_k - \hat{x}_k$

Equality constraints:

$$\mathbf{a}^T \mathbf{x} = a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b \ge 0$$

Several approaches:

Eliminate a variable: and the equality constraints will disappear

Eg:
$$x_n = \frac{b}{a_n} - \frac{a_1}{a_n} x_1 - \dots - \frac{a_{n-1}}{a_n} x_n$$

- Use the fact that $a^Tb = 0 \Leftrightarrow a^Tb \ge 0$ and $a^Tb \le 0$
- Use an artificial variable

Finding an initial FCP solution

Finding and initial FCP solution can be as hard as finding the optimal solution itself.

- Recall for standard LP problem: $\max Z = c^T x | Ax \le b$, with $x \ge 0$
 - o To get an initial FCP solution,we introduce slack variables $x_s \ge 0$. We set x = 0 and $x_s \ge 0$

This will fail if there is an equality of ≥ constraint in a non standard LP problem

1)
$$a^Tx = b$$
: $x = 0 \rightarrow a^Tx = 0 \neq b$. So doesn't work

2)
$$\mathbf{a}^T \mathbf{x} \ge \mathbf{b} > \mathbf{0}$$
: $\mathbf{x} = 0 \rightarrow 0 \ge \mathbf{b} > 0$. Doesn't work

Eg:

$$\max Z = 3x_1 + 5x_2$$

 $with x_1 \le 4$
 $3x_1 + 2x_2 \ge 18$
 $2x_2 \le 12$
 $with x_1, x_2, x_3 \ge 0$

Introduce slack variables: x_3 , and x_5 and a surplus variable x_4 : so the constraints become

$$x_1 + x_3 = 4$$

 $2x_1 + 2x_2 - x_4 = 18$
 $2x_2 + x_5 = 12$

Stragetry is to introduce an "artificial variable" \bar{x}_6 (bar indicates artificial),

Note on = or \geq constraints for artificial variables \bar{x}_k

- We introduce an artificial variable for each $\geq or =$ constraint, on top of the surplus variable (which is has a negative coefficient)

The constraints become:

$$x_1 + x_3 = 4$$

 $2x_1 + 2x_2 - x_4 + \bar{x}_6 = 18$
 $2x_2 + x_5 = 12$
 $with x_{1 \to 6} \ge 0$

Our initial FCP is given by setting:

$$x_{decision} = 0 \rightarrow x_1, x_2 = 0$$

 $x_{surplus} = 0 \rightarrow x_4 = 0$
 $x_{slack} = RHS$
 $x_{artificial} = RHS$

(note: so the $-x_4+\bar{x}_6=(0)+18=18$) so it holds

Note: we do not recover the initial \geq constraint unless $\bar{x}_6 \rightarrow 0$

Problem to encounter: Lemma

Consider the LP problem:

(1)

$$\max c^T x$$

subject to $Ax = b$
 $x \ge 0$

Then:

(2)

$$Ax + z = b$$
 (if z is the vector of artificial variables)
 $\therefore x, z \ge 0$

Lemma:

The LP problem (1) is feasible if and only if the optimal value of the LP problem (2) is achieved if z = 0 in the final step

PROOF of Lemma:

 \Longrightarrow If x^* is a feasible solution of (1), then $(x^*, 0)$ is a feasible solution of the LP problem 2, and therefore is optimal. So z = 0

 \Leftarrow if, on the oter hand, the optimal value of minimising the $\sum_{i=1}^n z_i$ is zero; with solution of (2) being $(x^*, \mathbf{0})$ and thus x^* is a feasible solution $Ax^* = \mathbf{b}$ of (1).

Example of non standard LP:

$$\max Z = 3x_1 + 5x_2$$

Subject to:

$$x_1 \le 4$$

$$3x_1 + 2x_2 \ge 18$$

 $2x_2 \le 12$
with $x_1, x_2 \ge 0$

$$\therefore$$
 first FCP: $x_1 = x_2 = x_4 = 0$; $x_5 = 12$; $\bar{x}_6 = 18$

Two Phase Simplex algorithm:

We can find an initial basic feasible solution to the non standard LP problem:

$$\max Z = 3x_1 + 5x_2$$

Subject to:

$$x_1 \le 4$$

 $3x_1 + 2x_2 \ge 18$
 $2x_2 \le 12$
 $with \ x_1, x_2 \ge 0$

By casting as the following:

$$\therefore first\ FCP : x_1 = x_2 = x_4 = 0; x_5 = 12; \bar{x}_6 = 18$$

Eg: if

$$x_1 + x_2 = 2 \\ 2x_1 + x_2 \ge 1$$

We then have:

$$x_1 + x_2 - x_3 = 2$$

$$2x_1 + x_2 - x_4 + \bar{x}_5 = 1$$