- Resonance structure, partial sharing of 2 pairs of electrons between carbonyl O and amide N
- Resonance causes the peptide bonds to be:
 - Less reactive
 - Exhibit a dipole (partial negative at carbonyl oxygen, partial positive at amide nitrogen)
 - o Rigid and planar
 - Rotation about the peptide bond is not permitted, rotation around the alpha carbon is permitted

Secondary Structure

- Local spatial arrangement of the polypeptide backbone
- Alpha Helix
 - Stabilized by H bonds between C=O and N-H groups 4 amino acid residues apart
 - o Polypeptide backbone winds tightly around a longitudinal axis
 - o Right handed (thumb up) helix with 3.6 residues per turn
 - o R groups stick out
 - Sequence affects alpha helix stability
 - Interactions between R groups can stabilize or destabilize a helix
 - Glutamic acid R groups will repel each other
 - Bulky amino acids won't fit close together in the chain (steric hindrance)
 - Proline breaks the helix because rotation around the alpha carbon is impossible
 - Glycine is a helix breaker because its tiny R groups gives too much flexibility
 - Small hydrophobic residues such as Alanine and Leucine are strong helix formers
- Beta Pleated Sheet
 - Stabilized by H bonds between adjacent segments
 - o Several beta strands that run alongside each other
 - O Stabilized by H bonds between C=O and N-H groups from an adjacent segment that may be nearby or distant
 - o Parallel: run in same direction, bent H bonds, weaker
 - o Antiparallel: run in opposite direction, linear H bonds, stronger
 - o B turns = when strands change direction, stabilized by H bond
- Random Coil
 - o Irregular arrangement of the polypeptide chain

Tertiary Structure

- Overall spatial arrangement of atoms in a protein
- Stabilized by numerous, longer range, weak interactions between amino acid side chains
 - Hydrophobic interactions, polar interactions, covalent disulfide bonds, ionic bonds