Inflammation and Repair

24/02/2016 11:57 AM

reaction to injurious agents- vascular, cellular and systemic fluid and cells -> site injury protective response sensitive activation, massive amplification, controlled down regulation

Signs:

- Calour = heat
- Rubor= redness
- Tumor = swelling
- Dolor = pain
- Loss function

Causes of Acute Inflamm

- · Infections and toxins
- Trauma
- Physical and chem agents- burns, irradiation -> blisters
- Tissue necrosis: when nutrient supply cut off -> spill contents (detected) limit damage and clean up spillages
- · Foreign bodies- splinter, dirt
- Hypersensitivity reactions

Steps for inflamm

- 1. Initial event signal that response needed
- 2. RESPONSE: allow fluid and cells to move from circulation -> injured sitevascular system permeable
- 3. Cells -> correct area -only want active here otherwise -> damage
- 4. Cell send signals recruiting other cells and begin action
- 5. Down regulation when finished

Cell action:

<u>Phagocytosis:</u> engulf organism/ particle -> lysosome fuses with phagosome -> phagolysosome - inject various antimicrobials etc. and kill organism

Activation: direct lysis and killing

From signals delivered from cell surface- many diff receptor pathways

- Arachadonic acid metabolite production, cytokines, modulation of adhesion molecs etc.
- E.g. CD14 reacts with lipopolysacc from bact- indicates infect

Release mediators:

Inflamm Mediators- source:

Cell-derived: act alone and active when secreted

- some pre-made in granules e.g. histamine -degranulation mast cells release histamine- reaction e.g. sneeze -rapid
- newly synth'd take longer be produced e.g. prostaglandins

Plasma mediators: act in interacting cascades and reg activation

 produced constantly in liver- not when just needed i.e. clotting factors, complement

Diff stimuli -> diff courses of inflamm- resolve diff

Mediators short half-lives – degrade quickly so inflamm only persist when stimulus persists

TYPES OF INFLAMMATION:

Purulent Inflamm:

-> large amounts of pus = dead WBC/bact , caused pyogenic bact (Staph)

Lots neutrophils, necrotic cells and edema fluid

Abscess = collection of purulent inflamm tissue in confined space (deep in tissues)

- central region of necrotic cells
- · preserved zone of neutrophils
- · vascular dilation and fibroblast prolif

pimples and boils can occur internally- can become systemic

Fibrous Inflamm:

Fibrinogen -> tissues and cleaved -> FIBRIN (not flexible- dangerous on pericardium, also difficult to remove)

Fibrin broken down and removed (resolution)- If not removed -> scarring Serous Inflamm:

Thin fluid from plasma or mesothelial cells in peritoneal, pleural and pericardial

E.g. blisters from burns or viral infect

Ulcerous Inflamm:

Loss of ep layer- expose underlying layers

Excavation in tissue surface by shedding of necrotic inflamm tissue

Mucosa of mouth, stomach, intestines of GIT

COMPLETE RESOLUTION

Return normal permeability, drain fluid and proteins into lymph, pinocytosis into macrophages, phagocytosis apoptotic neutrophils and necrotic debris, disposal macrophages

Acute inflamm disease

 Resp distress syndrome, transplant rejection, asthma, septic shock, vasculitits

Chronic inflamm disease

Arthritis, asthma, atherosclerosis, chronic transplant rejection

HEALING

repair = laying down collagen or elastic tissue

Inflamm and healing occur simultaneously

New tissues must be formed and must be vascularized - angiogenesis

Fibro-proliferation response patches areas of damaged tissue

- Inflamm- remove damaged and dead tissue
- prolif of CT and parenchymal cells
- Form new blood vessels and synth of new extracellular matrix proteins
- Tissue remodeling- collagen remodeling -> strength
- Wound contraction and acquire wound strength

Factors affecting Healing:

- INJURY-RELATED: nature of injury, intensity of stimulus and duration
- INFLAMM FACTORS: foreign bodies, poor vascularization, denervation, mech stress, necrotic tissue, surgical techniques
- HOST FACTORS: age, anemia, drugs, genetic disorders, hormones, diabetes, obesity, systemic infection, vitamin deficiency

Formation of Scars:

- 1. Migration and prolif of Fibroblasts:
 - a. Macroscopic- soft, pink and granular
 - b. Microscopic- angiogenesis and fibroblast prolif
 - c. New vessels leaky -> edematous

 Fibrinogen and plasma fibronectin -> early stroma
 - Fibroblasts attracted by TGFβ,PDGF,EGF,FGF, IL1 and TNF
 - Macrophages produce GF's, clear debris, fibrin and foreign material

2. ECM Deposition:

- a. Fibroblasts = maj source of ECM components
 - i. Collagen synth and deposition
- Granulation tissue -> scar
 - o Spindle shaped fibroblasts, dense collagen, elastic tissue fragments
- Vascular regression -> scar becoming pale

Complications of healing

<u>Deficient Scar formation:</u> mech stress or poor vascularization, can rupture and/or ulcerate

<u>Excessive formation of repair components:</u> excess collagen -> raised scars - HYPERTROPHIC

Scar beyond original borders = KELOID (genetic components evident)

<u>Contractures:</u> too much contraction deforms surrounding tissue

L3: Intro to Immunity

24/02/2016 11:57 AM

<u>Non-specific mechanisms:</u> resisting barriers, skin, ciliated ep, sebaceous glands, digestive enz and normal microbiota

<u>Innate system:</u> phagocytosis and intracellular killing, NK cells, complement, natural AB, TLR's

Adaptive: Humoral (B cell) response -> AB and memory B cells,

Cellular (t cell) response: T cells (CD8 and CD4), reg T cells and memory T

cells

Lymphatics

Ag captured from site infect -> transport to draining LN where immune response is initiated

• Follicle (Blue area) = B-cell rich

Ag Shown epitope -> activated and makes cytokines -> activate macrophage

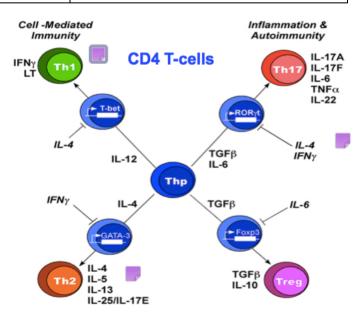
CD8 cells only activated by cells present internal Ag- kill cells similar those activated it

Dendritic Cells:

Immature DC in skin = Langerhans cells

During migration DC mature -> efficient APC

	Immature DC	Mature DC
Function	Ag capture	Ag presentation
Expression FC,	Υ	N
mannose receptors		
Molecs involved in T	N or low	Υ
cell activation		
Class II MHC moec -	10 hours	>100 hours
half life on surface		
Number class II	10^6	7 x 10^6
molecs on surface		


T- cell activation – Danger Signal DANGER SIGNAL

 Prevents reaction with novel host proteins (breast milk)

delivered through TLR

 -> cascade of kinase reaction that reach nucleus and activate cell

Th1 subset -> intracellular bacteria

Th2 -> allergies and parasites
Pathways antagonists – turn each other off
Transcription factors (blue) help in this