Human pharmacology

Human pharmacology I – Pharmacogenetics

Individual variation in drug response

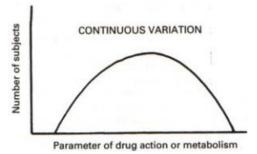
• Variability can cause: lack of efficacy or unexpected side-effects.

renal function Immunological I

Types of variability include: pharmacokinetic
 (enzymes), pharmacodynamic (receptors), or idiosyncratic.

- Main **causes of variability**:
- Age
 - Genetic factors
 - Physiological states (e.g. pregnancy)
 - Pathological states (e.g. kidney/liver disease)
 - Drug interactions

Importance of genetics in drug metabolism


- Drug half-lives shown to be:
 - Very similar in identical twins
 - Markedly *different* in <u>fraternal</u> twins.
 - Markedly *different* in <u>unrelated</u> individuals.
 - Therefore, genetic control of metabolism is a dominant factor.
 - Environmental control of drug metabolism if a factor of SECONDARY IMPORTANCE!
 - Note: environmental factors may contribute to *population* variability – while not through a genetic mechanism, they may act at a *transcriptional level*.

Molecular mechanisms of genetic polymorphism


- Single Nucleotide Polymorphisms (SNPs)
 - Coding, nonsynonymous e.g. TPMT*3A
 - Single nucleotide change cause change in amino acid sequence, e.g. CCG →
 CAG changes Pro → GIn
 - Coding, synonymous e.g. ABCB1 C3435T
 - Single nucleotide change that codes for the same amino acid, e.g. CCG \rightarrow CCA changes **Pro** \rightarrow **Pro**
 - **Noncoding** (promoter, intronic) e.g. CYP3A5*3
 - May alter rate of transcription.
- Indels
 - Insertions/deletions, involve insertion or deletions of base-pair sequences.
- Copy Number Variations (CNVs)
 - Involve gene duplications

- e.g. *CYP2D6*, can have up to **13 copies**
- Or large deletions
 - E.g. entire GSTT1 and GSTM1

Variation in response – genetic

• **Continuous variation** in response to a drug implies that the genes involved are **essential genes that are least likely to be polymorphic** → i.e., highly **conserved**

• **Discontinuous variation** in response to a drug implies that involves **polymorphic genes**.

Parameter of drug action or metabolism

The concept of **polymorphism**

- Polymorphism is defined as the occurrence together of two or more discontinuous forms in a species in such proportions that the **rarest of them** cannot be **maintained** merely by recurrent mutation.
 - i.e., the polymorphism is maintained due to being advantageous in particular conditions.
- Genetic variation exists in populations so that a **swift response** can be made to changes in the environment. Once phenotype will **better survive** the direction of the change in the environment.

Inter-ethnic variability in drug response

- Different ethnic groups respond differently to some drugs
- Most examples of such response variation are due to genetic polymorphisms in drug metabolising enzymes e.g. N-acetyltransferases (phase 2 metabolism); CYP450's (phase 1 metabolism)
- Enzyme activity then modulates drug concentration and hence response (PHARMACOKINETIC)
- Genetic differences in receptor function also occur (PHARMACODYNAMIC)

Enzyme polymorphism: human cholinesterase

- Drug: succinylcholine (suxamethonium) acts by blocking neuromuscular junction
- Enzyme: pseudocholinesterase in plasma hydrolyses succinylcholine
- Metabolites: succinic acid + choline (no pharmacological actions)

• Polymorphism: hydrolysis of succinylcholine by butyrlcholinesterase (pseudocholinesterase) is impaired in <u>1:3500</u> 'white' subjects; leads to prolonged muscle paralysis and apnea.

Enzyme polymorphism: inhibiting cholinesterase

- **Dibucaine** inhibits pseudocholinesterase.
- Extent of inhibition is dependent on the **enzyme phenotype** or **genotype**.
 - Classifies cholinesterase phenotypes & assess risk.
- Polymorphism is caused by MANY POINT MUTATIONS major one at NUCLEOTIDE 29 causes G → A change in enzyme and reduces activity. Others increase activity.

Enzyme polymorphism: *N-Acetyltransferases*

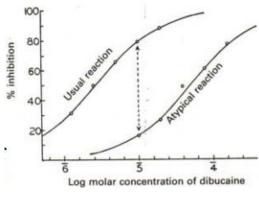
- First example of genetic control of drug disposition
- Found that humans could be classified as "*rapid*" or "*slow*" with regard to their ability to metabolise the drug **ISONIAZID** (antituberculosis agent, isoniazid converted to *acetylisoniazid*, which is inactive).
- Individuals with 1 or 2 wild-type alleles classified as rapid; those with 2 mutated alleles as slow.
 - Other relevant drugs: procainamide (anti-arrhythmic drug); hydralazine (antihypertensive agent)

Isoniazid – NAT2 phenotype

Ethnic grouping of **slow acetylators**:

Orientals	% slow	Caucasians	% slow
Japanese	7-12	UK	53-62
Korean	11	Canadian	59-70
Philipino	28	Finns	61-64
Chinese	13-22	German	57
Thai	18	Italian	49
Ainu	13	Australian (?)	54

Therefore the *NAT2* genotype with **2 mutated alleles** is more common in Caucasians (*slow* acetylators.)


NAT2 genotype with 1 or 2 wild type alleles is more common in orientals (rapid acetylators).

NAT2 phenotype & **colorectal cancer**

• When compared with **age and gender-matched controls**, data suggests that there is an *excess of rapid acetylators* with among patients with **colorectal cancer**.

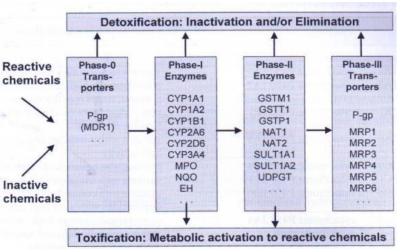
Colorectal cancer – possible mechanisms

- Metabolism of dietary & environmental amines occurs by CYP1A2 in the liver
 - Produces N-hydroxy metabolite
 - NAT2 enzyme mediates acetylation of the N-hydroxy metabolite
 - Forms reactive metabolite that can form covalent conjugates with DNA
 - NAT2 activity is present in greater concentrations in the colon epithelium of rapid acetylators than of slow acetylators, increasing the exposure of their colons to reactive N-acetyl metabolites

Pharmacogenetics of **phase 1** metabolism

CYP450 enzymes

•


- One member CYP2D6 represents one of the most intensively studied examples of pharmacogenetic variation.
 - Approximately 5—10% of white subjects found to have a relative deficiency in their ability to oxidise the anti-hypertensive drug debrisoquine.
 - Genetic variants responsible for **low levels of CYP2D6** range from:
 - **SNPs** that alter amino acid sequence of the encoded protein (*non-synonymous*)
 - SNPs that alter RNA splicing (non-coding)
 - Deletions of the CYP2D6 gene
- Genetic variants that are responsible for **ultra-rapid metabolism** are due to *multiple copies* (duplications) of the CYP2D6 gene (*copy number variation*)
- Overall >75 CYP2D6 variations have been described.
 - Among northern Europeans, multiple copies of CYP2D6 gene is relatively infrequent. However in *some* East African populations, frequency can be as high as 29%.

Drug effects of CYP2D6 polymorphism

- 1. Nortriptyline
 - Nortriptyline used to treat hypertension
 - No/low CYP2D6 → huge increase in plasma drug concentration → increase in clinical response (massive blood pressure drop)
 - 65—80% of Caucasians are extensive metabolisers, requiring much higher doses
 - Same applies for **sparteine**, **debrisoquin**.

2. Codeine

- Codeine metabolised by CYP2D6 into active metabolites morphine
 - Rapid metabolisers would produce more morphine than normal, possibly leading to morphine overdose at lower doses
 - Poor metabolisers would produce **less morphine**, & more of the drug would be cleared unchanged \rightarrow don't get analgesic effects of the drug.

Polymorphisms in drug transporters & metabolism – link to **cancer susceptibility**

• Polymorphism in Phase-0 transporters can lead to reduction in reactive chemicals being detoxified

• Polymorphism in Phase-3 transporter can lead to reduction in metabolites being detoxified, leading to increased chance of toxification