# **Valuing Ordinary Annuities**

Present value of an ordinary annuity:

$$PV = \frac{CF}{i} \left[ 1 - \frac{1}{(1+i)^n} \right] \begin{tabular}{l} Where: \\ CF = annuity cash flow \\ i = interest rate per compound period \\ n = number of annuity cash flows \\ \end{tabular}$$

## **Ordinary Annuities: Present Value**

Find the present value of an ordinary annuity of \$3,000 p.a. for 5 years if the interest rate is 8% p.a. by:

(a) Discounting each individual cash flow.

$$PV = \frac{CF_1}{1+i} + \frac{CF_2}{(1+i)^2} + \frac{CF_3}{(1+i)^3} + \frac{CF_4}{(1+i)^4} + \frac{CF_5}{(1+i)^5}$$

$$= \frac{3,000}{1.08} + \frac{3,000}{(1.08)^2} + \frac{3,000}{(1.08)^3} + \frac{3,000}{(1.08)^4} + \frac{3,000}{(1.08)^5}$$

$$= \$11,978.13$$

(b) Using the annuity formula

$$PV = \frac{CF}{i} \left[ 1 - \frac{1}{(1+i)^n} \right] = \frac{3,000}{0.08} \left[ 1 - \frac{1}{(1.08)^5} \right]$$
$$= 3,000 \times 3.992710 = \$11,978.13$$

# **Ordinary Annuities: Future Value**

Future value of an ordinary annuity:

$$FV = \frac{CF}{i} \Big[ (1+i)^n - 1 \Big] \begin{tabular}{l} Where: \\ CF = annuity cash flow \\ i = interest rate per compound period \\ n = number of annuity cash flows \\ \end{tabular}$$

# **Ordinary Annuities: Future Value**

Mandy intends to save \$100 each month starting with her next monthly salary. The current interest rate on her savings account is 3% p.a., payable monthly. How much will Mandy have saved after 3 years?

- Monthly interest rate is 0.03/12 = 0.0025 = 0.25%.
- After 3 years, Mandy will have saved:

$$FV = \frac{100}{0.0025} [(1.0025)^{36} - 1]$$
$$= 100 \times 37.62056 = \$3,762.06$$

## **Constant Dividend Growth Valuation**

• More realistic to assume that dividend will grow.

**Constant Growth Valuation Model:** 

• If dividends are expected to grow at a constant rate

$$P_0 = \frac{D_0(1+g)}{(R-g)}$$
 where  $g =$  expected growth rate in dividend per share

# **Impact on Share Prices**



Coco Ltd has just paid an annual dividend of \$0.30 per share, which is expected to grow at 5% indefinitely. If the required rate of return is 8%, how much would you be willing to pay for the share?

$$P_0 = \frac{D_0(1+g)}{(R-g)} = \frac{0.30(1+0.05)}{(0.08-0.05)} = $10.50$$

## **Variable Dividend Growth Model**

- Allow for different growth rates.
- It is possible for dividends to grow at a high rate for a number of years but not indefinitely.
- Assume dividend will grow at a constant rate some time in the future.

$$P_0 = \frac{D_1}{1+R} + \frac{D_2}{(1+R)^2} + \dots + \frac{D_T}{(1+R)^T} + \frac{P_T}{(1+R)^T}$$

# **Topic 4: Project Evaluation**

# **Capital Budgeting Questions**

 Managers of firms are often confronted with major capital budgeting decisions.

# Examples of capital budgeting decisions are:

- To proceed or not to proceed with a proposed project?
- Among the proposed projects, which project to invest in?

## The importance of capital budgeting

- Capital budgeting decisions are the most important investment decisions made by management.
- The goal of these decisions is to select capital projects that will maximise shareholders' wealth.
- Capital investments are important because they involve substantial cash outlays and, once made, are not easily reversed.
- Help management to systematically analyse potential business opportunities in order to decide which are worth undertaking.

# **Capital Budgeting Process**

## **Capital Budgeting (Investment):**

Cash outlay(s) now in the expectation of benefits (net cash inflows) later.

#### **Sources of information**

- Most of the information needed is generated internally,
  - a. Beginning with the sales force
  - b. Then the production team is involved
  - c. Followed by the accountants
- All this information is then reviewed by the financial managers who evaluate the feasibility of the project

#### **Classification of Investment Projects**

Capital budgeting projects can be broadly classified into **three types**:

- Independent projects
- Mutually exclusive projects
- Contingent projects

## **Independent Projects**

- Projects are independent when their cash flows are unrelated
- If two projects are independent, accepting or rejecting one project has no bearing on the decision on the other

## **Mutually Exclusive Projects**

When two projects are mutually exclusive, accepting one automatically precludes the other