Introduction to Soil Mechanics

Soil mechanics applies principles of engineering mechanics to predict the physical behaviour of soils

Factors Influencing the Strength of Soil

- The density of the soil
- The water content of the soil
- The size of the particles and their shape (round, angular)
- Composition of the soil (relative proportions of each component)

Soil Instability

- Wetting → instability due to wetting is caused by an overall volume increase due to the take up of additional soil water
 - (clay has an expansive nature)
- Drying → instability due to drying cause by overall volume reduction due to the loss of water (cracks may form)

Soil Strength

refers to the ability of the soil to resist imposed forces (tension, compressive, shear)

→ when looking at soil we are generally concerned with the shear strength of the soil

Soil Confinement

the confined strength of soil is much higher

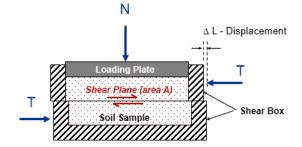
→ the **higher** the **compressive strength** imposed on the soil the **higher** the **shear strength** (the further down the soil the greater the shear strength due as the confining pressure increases)

Direct Shear Test

a soil is **confined** in a **shear box** which has a **loading plate** placed on the **top** and **shear stresses** are **imposed**

→ the shear strength can then be calculated from working out the shear stress imposed and the shear plane area

Soil Failure


soil failure generally occurs along a shear plane

- → may have a **foundation** or **slope failure** (from excavation)
 - Slope Failure a slope may fail from it being
 - **Too steep** the resistive force by the soil in equilibrium is equal to the weight of the soil, if the slope is too steep the weight may exceed the maximum resistive force
 - Too much load the resistive force is not sufficient to hold the load
 - Too much water content too much water content increases the load but more importantly the water content will create pressure that has a tendency to push the involved interfaces apart (water pressure will affect fine and coarse grained soils differently)

Water Pressure

F will increase as N increases (Law of Friction)

- → if **F** is **sufficient** the **soil** will **not fail** along the **shear plane** (assuming no water content)
- → when there is water there is a force created by the water pressure which decreases the net contact force and thus the F force will decrease
- → the offset of the N force and thus F force, will reduce the shear strength as the water pressure pushes the soil particles apart

