

Endocrine System

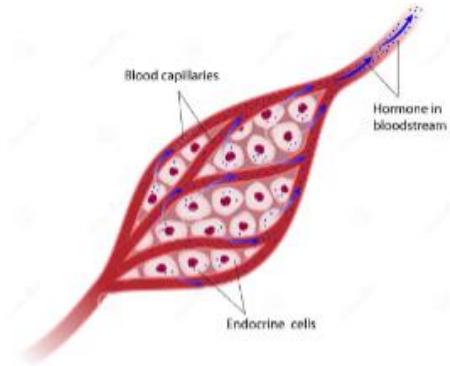
Endocrine System

- Maintains homeostasis, especially of things that do not require immediate adjustment
- Its effects are exerted over longer periods of time for things that require duration rather than speed e.g. growth, metabolism, reproduction
- Its cells are NOT interconnected and must communicate via chemical messengers through the blood
- The endocrine system acts with the nervous system to coordinate all systems of the body
 - o The endocrine system acts slowly, the nervous system acts fast
- Endocrine tissues may act on one or multiple organs

Chemical Messengers

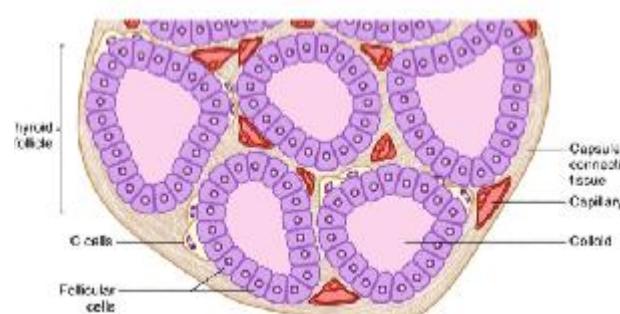
- Affect the activity of cells, tissues and organs by
 - o Controlling the rate of enzymatic reaction
 - o Controlling ion and molecular transport across the membrane
 - o Controlling gene expression and protein synthesis
- Chemical messengers include
 - o Neurotransmitters
 - Released by axon terminals of neurons into synaptic junctions and act locally on cells
 - o Autocrines
 - Secreted by cells into the extracellular fluid and act on the same cells that released them
 - o Paracrines
 - Secreted by cells into the extracellular fluid and act on neighbouring cells of a different type
 - o Endocrine Hormones
 - Released by glands or specialised cells into the **blood** and act on cells at another location
 - Allow for longer distance communication between cells
 - o Neuroendocrine Hormones
 - Released by neurons into the **blood** and act on cells at another location
 - Allow for longer distance communication between cells
 - o Cytokines
 - Peptides that when released into the extracellular fluid can act as autocrines, paracrines or endocrine hormones

Major Organs and Tissues of the Endocrine System


- Hypothalamus
 - o Releases ADH, oxytocin etc.
- Pituitary Gland
 - o Anterior lobe releases ACTH, TSH, GH etc.
 - o Posterior lobe releases oxytocin, ADH
- Thyroid Gland
 - o Releases thyroxine, calcitonin etc.
- Adrenal Glands
 - o Adrenal medulla releases epinephrine, norepinephrine
 - o Adrenal cortex releases cortisol, corticosterone etc.
- Pancreas
 - o Releases insulin, glucagon
- Pineal Gland
 - o Releases melatonin
- Parathyroid Gland
 - o Releases parathyroid hormone

Structure of Endocrine Tissues

- Are highly vascularised to carry out their functions


Trabecular Endocrine Tissue Structure

- Anastomosing strands of cells forming a “disorganised” network
- Separated by loose connective tissue with numerous capillaries
- Hormones are stored inside the cells
- All endocrine tissues are trabecular endocrine structure, except the thyroid gland

Follicular Endocrine Tissue Structure

- Multiple follicles with rings of a simple one layered epithelium surrounding a lumen with a fluid filled cavity (colloid)
- Hormones are produced and stored in the lumen
- Capillaries exist between the follicles
- Only the **thyroid gland** is a follicular endocrine structure

Hormone Action and Regulation

Hormones

- Are molecules that enable communication between cells, eliciting a physiological response
- A substance formed in one part of the body, carried by bodily fluids, and effective in very low concentrations at another part of the body; an endocrine regulator

Classes of Hormones

- Peptide Hormones
 - o Composed of linked amino acids
 - o Hydrophilic
 - o Lipophobic – must bind to cell surface receptors
 - o Are secreted by the hypothalamus, pituitary gland, pancreas, parathyroid gland, gastrointestinal tract and adipose tissue
 - o Synthesised in the rough endoplasmic reticulum and packaged into secretory vesicles ready for release by exocytosis following a stimulus
 - o Can't enter their target cells, they bind to a membrane receptor on the cell's surface
 - o E.g. insulin, growth hormone, glucagon, oxytocin, vasopressin, TSH etc.
- Steroid Hormones
 - o Derived from cholesterol
 - o Hydrophobic
 - o Lipophilic – diffuse freely across cell membranes
 - o Are secreted by the adrenal cortex, ovaries, testes and placenta
 - o Are not stored, they are synthesised rapidly from cholesterol stores and diffuse out of the blood following a stimulus, bound to carrier proteins (99% of the time) (from the liver) e.g. SHBG binds with testosterone, albumin binds with thyroid hormones
 - o Once **unbound**, the hormones diffuse into the cell and bind to either a cytoplasmic receptor and get taken up into the nucleus OR bind straightaway with a nuclear receptor in the nucleus
 - o E.g. cortisol, aldosterone, testosterone, estrogen, progesterone, corticosterone etc.
- Amines
 - o Derived from amino acids (tryptophan OR tyrosine)
 - o Hydrophilic
 - o Are secreted by the thyroid, adrenal medulla, pineal gland and neuroendocrine cells in the central nervous system and gastrointestinal tract
 - o Synthesised in the rough endoplasmic reticulum and packaged into secretory vesicles ready for release by exocytosis following a stimulus
 - o Can't enter their target cells, they bind to a membrane receptor on the cell's surface
 - o E.g. T4, T3, epinephrine, norepinephrine, melatonin, serotonin, dopamine etc.

Types of Hormonal Systems

- Trophic/ Tropic
 - o Increase or decrease the secretion of other hormones
 - o Involves complex pathways
 - o E.g. TRH (trophic) stimulates the pituitary gland to release TSH (trophic) which stimulates the thyroid gland to release thyroid hormones (non-trophic) to then regulate metabolism
 - o The hormone that finally acts on the organ is non-trophic ... some hormones e.g. growth hormone are trophic and non-trophic in different circumstances
- Non- Trophic
 - o Directly effect a target organ or cell (non-endocrine organs)
 - o Involves simple pathways
 - o E.g. parathyroid hormone directly effecting bone and kidneys to increase calcium concentration in the instance of low calcium in the body

Mechanisms by Which Hormones are Released

- Humoral Stimulus
 - o Stimulus by body fluids e.g. blood
 - o E.g. low concentrations of calcium stimulating the parathyroid hormone to increase calcium
- Neural Stimulus
 - o Stimulus by neuron signals from the nervous systems
 - o E.g. preganglionic sympathetic fibres from the central nervous system stimulate the adrenal medulla to secrete epinephrine and norepinephrine
- Hormonal Stimulus
 - o Stimulus by other hormones
 - o E.g. TRH stimulates the pituitary gland to release TSH which stimulates the thyroid gland to release thyroid hormones to then regulate metabolism
- Some hormones can be triggered by more than one stimulus e.g. insulin from the pancreas