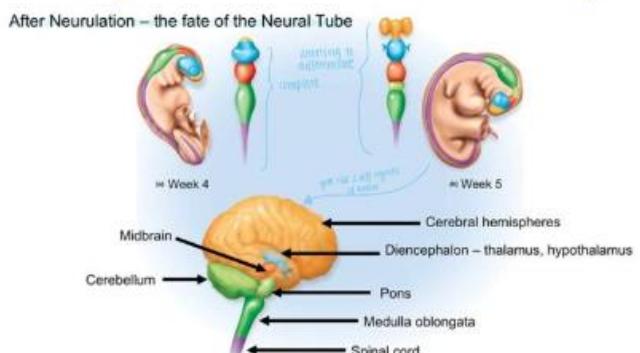


ANHB1102 LEARNING OUTCOMES

- ◊ Describe the basic structure and function of the human body at the level of organs and systems
- ◊ Explain how the nervous and endocrine systems interact to maintain homeostasis
- ◊ Explain the processes of nutrition, growth, development & ageing
- ◊ Describe genetic & evolutionary processes which determine human differences between and within populations
- ◊ Relate the biology of humans to their evolutionary history

NERVOUS SYSTEM

- ◊ Describe the embryological development of the nervous system (lecture 03, slide 4-5)
 - ⇒ **Neurulation** – embryological development of the nervous system
 - Approx. week 3 of development
 - Begin in centre of developing embryo with **neural plate**, **neural crest**, **ectoderm** & **notochord**
 - Notochord changes fate of **ectoderm** to give rise to **CNS & PNS** instead of epidermis
 - Begin to close in on each other (**neural plate** turns into **neural fold**)
 - **Somites** (from mesoderm) give rise to **vertebral column**
 - Rapid growth to close tube
 - **Cranial neuropore** closes at **day 24** (head)
 - **Caudal neuropore** closes at **day 26** (tail)
 - Neural crest moves away from neural tube & everything is **covered by ectoderm**


⇒ **Endoderm** = ventral (internal organs and shit)

⇒ **Ectoderm** = dorsal (epidermis and hair)

⇒ **Mesoderm** = middle (notochord)

⇒ **Neural tube** – brain and spinal cord

- After neurulation, complete neural tube begins to **differentiate** into different regions of the brain & spinal cord

⇒ **Neural canal** – fluid-filled spaces in CNS (ventricles & CSF)

- 4 **ventricles** formed & filled with CSF

→ 2 **lateral ventricles** – 1 in **each hemisphere**

→ Third ventricle separated from lateral ventricles via **interventricular foramen**

→ Fourth ventricle separated from third via **cerebral aqueduct**

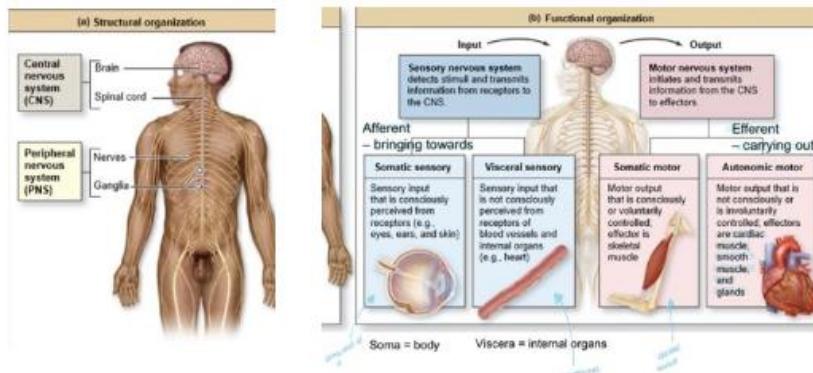
- CSF constantly produced & reabsorbed
- Produced by choroid plexuses
- Lateral & medial aperture allow CSF to leak out of brain into spinal cord & circulate
- Function of CSF:
 - Buoyancy
 - Protection
 - Chemical stability

⇒ Neural crest cells – most of PNS (sensory & autonomic nerves, ganglia, Schwann cells)

◊ Describe and identify gross anatomical features of the nervous system

⇒ CNS – brain and spinal cord

⇒ PNS – (cranial & spinal) nerves & ganglia


◊ Describe the functional divisions of the nervous system

⇒ Sensory input (afferent)

- Somatic sensory (conscious)
- Visceral sensory (not conscious)

⇒ Motor output (efferent)

- Somatic motor (conscious/voluntary control)
 - Effectors: skeletal muscle
- Autonomic motor (not conscious/involuntary control)
 - Effectors: cardiac & smooth muscle, glands
 - Sympathetic nervous system (fight or flight)
 - Parasympathetic nervous system (rest & digest)

◊ Identify & understand the role of the basic cell types of the nervous system

⇒ Neurons

- Excitable (respond to environmental stimuli)
- Conductive (produce electrical signals)
- Secretory (neurotransmitters secreted at the end of the nerve fibre to stimulate next cell)

⇒ Glial cells

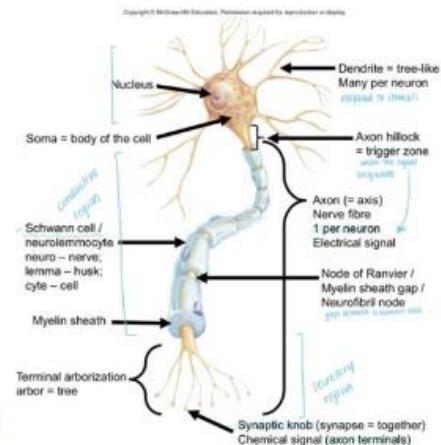
- PNS
 - Schwann cells/neurolemmocytes – myelination of axons
- CNS
 - Oligodendrocytes (chippy) – myelination of axons
 - Astrocytes (maintenance) – supportive framework, blood-brain barrier, maintenance, formation of synapses
 - Microglia (cleaner) – removes dead nervous tissue, foreign matter & microorganisms
 - Ependymal cells (idk plumber) – ciliated, circulate fluid in cavities of brain and spinal cord

◊ Understand the structure of a nerve cell (neuron)

⇒ Dendrites

- Signal input (receiving end)
- Short

- Thick
- Unmyelinated


⇒ Axons

- Signal output (transmitting end)
- Long
- Slender
- Unmyelinated or myelinated

⇒ Unipolar – only sensory

⇒ Bipolar – CNS sensory (smell, hearing, sight)

⇒ Multipolar – most neurons of CNS (interneurons) & motor PNS

◊ Explain how electrical signals are propagated

⇒ Neurons are polarised therefore have electrical potential

- Polarised = different properties on different sides

⇒ Stimulation of a neuron (via chemicals, light, heat, mechanical forces etc.) occurs at dendrite/soma and travels to axon

⇒ Stimulation opens channels in cell membrane that allow positive ions to flow into the cell (momentarily change balance) – creates a local potential

⇒ Inside of cell becomes less negative (moves towards zero)

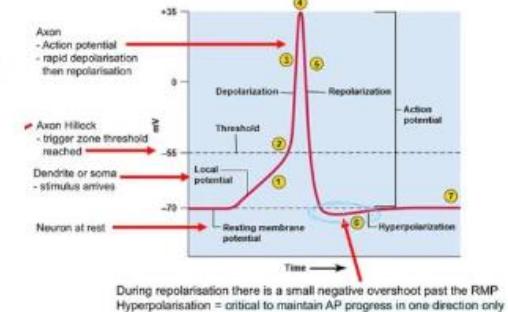
⇒ Local potential:

- Varies according to strength of stimulus
- Gets weaker as it spreads from point of origin
- Can be excitatory (depolarisation) or inhibitory (hyperpolarisation)

⇒ If excitatory local potentials strong enough & arrive at trigger zone of axon hillock, action potential initiates a current that is sent to the end of the axon

⇒ AP requires a critical voltage threshold that must occur at the trigger zone (-55mV)

⇒ When threshold is met neuron fires = massive depolarisation & reversed polarity


- Inside of cell membrane becomes very positive very quick

⇒ Once peak is reached, cell membrane starts to repolarise

⇒ Hyperpolarisation past the resting membrane potential must occur after an action potential to maintain progress of action potential in one direction

⇒ Nerve signal = chain reaction of APs

- AP stimulates new AP in cell membrane in front

◊ Understand terms such as resting membrane potential, action potential, refractory period

⇒ Resting membrane potential = charge difference across a cell membrane

- Resting membrane potential in an unstimulated neuron = approx. -70mV
 - Negative value = more negatively charged ions on inside of membrane than outside

⇒ Electrical potential = differences between concentration of charged particles on either side of the membrane (Na^+ , K^+ , Cl^- etc.)

⇒ Depolarisation = voltage shifts to less negative value

⇒ Hyperpolarisation = voltage shifts to more negative value

⇒ Action potential = rapid up and down shift in voltage

⇒ Trigger zone = specialised area of neuron cell membrane that allows to change in voltage

⇒ Refractory period = during/after AP it is impossible to restimulate the region to fire

- Absolute RF = during huge depolarisation, impossible to trigger new AP
- Relative RF = during hyperpolarisation, new AP possible but need stronger stimulus

- ◊ Explain how a synapse occurs
 - ⇒ **Synapse** = when nerve meets nerve
 - ⇒ Occurs from axons to dendrites or axons to axons
 - ⇒ Arrival of AP at **axon terminal (synaptic knob)** triggers release of **neurotransmitters (NT)** from synaptic vesicles (via exocytosis)
 - ⇒ NT travels across **synaptic cleft**
 - ⇒ Binds to NT receptors on post synaptic neuron
 - ⇒ NT depolarises postsynaptic neuron = local potential/post-synaptic potential
 - ⇒ **AP generated** if signal is strong enough
 - ⇒ **Can be thousands** of presynaptic neurons at a postsynaptic neuron
 - ⇒ Not all postsynaptic potentials are excitatory (some inhibitory)
 - **EPSP** = excitatory postsynaptic potential (less -ve/depolarisation)
 - **IPSP** = inhibitory postsynaptic potential (more -ve/hyperpolarisation)
 - ⇒ **EPSP & IPSP** like quick maths rules
 - **EPSP + EPSP = greater EPSP**
 - **IPSP + IPSP = greater IPSP**
 - **EPSP + IPSP = 0 (cancels out)**
- ◊ Understand the concept of summation
 - ⇒ **Summation** = **addition** of postsynaptic potentials
 - ⇒ **Calculations** to determine whether an action potential will be produced
- ◊ Explain why nervous transmission can occur at different speeds
 - ⇒ **Speed of transmission** depends on:
 - Myelination
 - Sensory nerve size
 - Sense type
 - ⇒ **Myelin sheath**
 - **Insulation** around nerve fibre
 - Made of cell membrane **glial cells** & approx. 80% lipids
 - Thick and dense (minimal cytoplasm between up to 100 layers)
 - Nodes of Ranvier in gaps of myelin sheath that the nerve impulse can travel on
 - Not all nerve fibres are myelinated
 - Unmyelinated fibres in PNS are enveloped with **Schwann cells** because more vulnerable to damage than CNS fibres
 - ⇒ **Myelinated nerve fibres** = **faster** speed of transmission of nerve signal
 - Nerve signal 'jumps' between nodes of Ranvier = **saltatory conduction**
 - Eg. walking normally
 - ⇒ **Unmyelinated nerve fibres** = **slower** speed of transmission
 - Nerve signal travels along entire length of nerve fibre
 - Eg. walking but touching your toe to your heel
 - ⇒ **Larger axon diameter** = easier for ions to flow = **faster** electrical current
 - Larger axons have **larger surface area**, so more charge accumulates at the membrane therefore increasing speed of transmission

Sensory nerve size	Sense type	Speed of transmission (m/s)	Analogous to
Largest / myelinated	Proprioception	80-120m/s	Shanghai Maglev Train (430km/hr)
Medium / myelinated	Touch	33-75m/s	Bullet Train (250km/hr)
Small / myelinated	Pain & cold temp.	3-30m/s	Speeding on the freeway (126km/hr)
Small / unmyelinated	Pain, warm temp & itch	0.5-2m/s	Middle aged female maximum walking speed (7.2km/hr)

Proprioception = sense of self movement and body perception.

- ◊ Explain axonal transport
 - ⇒ Passage of **proteins, organelles** & other materials along an axon
 - ⇒ Nerve cell bodies make all materials

- ⇒ **Two-way passage:**
 - Anterograde transport = soma → end of axon (mitochondria, vesicles, proteins)
 - Retrograde transport = end of axon → soma (waste, materials for recycling)
- ⇒ **Materials travel along axonal microtubules** = guide to destination (walking man)
- ⇒ **Fast axonal transport:**
 - Anterograde/retrograde
 - 200-400mm/day
- ⇒ **Slow axonal transport:**
 - Retrograde only
 - 0.2-0.5mm/day

◊ Describe and identify the components of a simple reflex arc

- ⇒ **Features:**
 - Require **stimulation**
 - **Quick** (few neurons, no interneurons)
 - **Involuntary** (no registration at brain – awareness comes later because protection > awareness)
 - **Stereotyped** (same response every time)
 - **Protective**
- ⇒ **Somatic reflex arc:**
 - **Somatic receptors** (skin, muscles etc.)
 - **Afferent** nerve fibres into **dorsal horn**
 - **Integrating centre** synapse into **ventral horn**
 - **Efferent** nerve fibres
 - **Effector** muscles
- ⇒ **Autonomic reflex arc:**
 - Stimulus (stretch, pressure, pH, temperature etc.)
 - Receptors (nerve endings to internal stimuli)
 - Afferent/sensory neurons to CNS
 - Integrating centre in hypothalamus & brain stem (interneurons)
 - Efferent/motor neurons in spinal cord & peripheral ganglia via cranial & spinal nerves
 - Effectors carry out end response (negative feedback)

◊ Describe and identify the components of sensory and motor pathways

- ⇒ All nerve fibres (axons) in a **named tract** have a **similar origin, destination & function**
- ⇒ **Ascending tracts** carry **sensory** information up the spinal cord
- ⇒ **Descending tracts** carry **motor** information down the spinal cord
- ⇒ **Sensory tracts:**
 - **Prefix – spino**
 - **First order neuron** – cell body located in **dorsal root ganglion**, detects stimulus
 - **Second order neuron** – cell body located in **dorsal horn** or **brainstem**, synapses at **thalamus**
 - **Third order neuron** – cell body located in **thalamus**, carries signal to **postcentral gyrus**
- ⇒ **Motor tracts:**
 - **Suffix – spinal**
 - **Upper motor neuron** – cell body located in **cerebral cortex** (precentral gyrus) or **brainstem**
 - **Lower motor neuron** – cell body located in **ventral horn** or **brainstem** nucleus
 - **Upper motor neurons** can excite/exhibit lower motor neurons
- ⇒ **Corticospinal tract**
 - Largest descending tract in humans
 - Lateral = innervates skeletal muscle for skilled limb movements, 85% of direct pathway to limbs
 - Ventral = 15% of pathway to trunk