

FORCE GENERATION

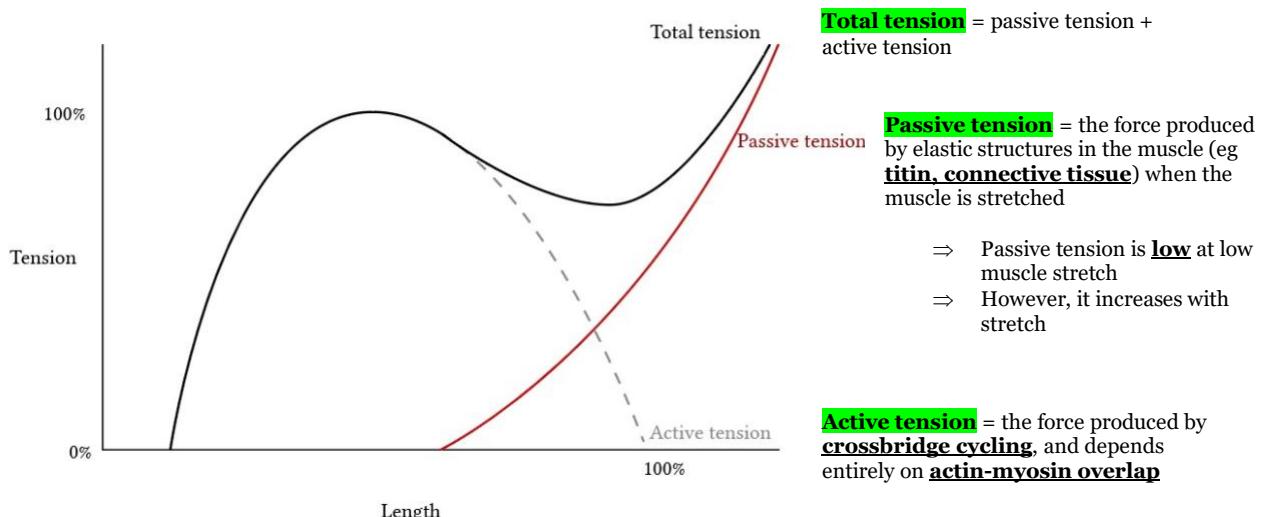
- Muscles vary significantly in their shape and size
 - Fibers can be arranged differently, such as inserting onto tendons differently
 - ****Differences in muscle architecture explain variability in force production between muscles****
- **Basic Pennation Arrangements:**

	Fusiform Arrangement	Unipennate Arrangement	Bipennate Arrangement
Definition	Muscle fibres run up and down, making fibre length \approx muscle length	Fibres insert <u>obliquely</u> on <u>only one side</u> of the tendon	There is a <u>central tendon</u> with fibres inserting <u>obliquely on both sides</u>
	 Fusiform	 Unipennate	 Bipennate
Examples	<ul style="list-style-type: none"> \Rightarrow Biceps \Rightarrow Brachialis 	<ul style="list-style-type: none"> \Rightarrow Palmar interossei \Rightarrow Extensor digitorum longus 	<ul style="list-style-type: none"> \Rightarrow Rectus femoris \Rightarrow Dorsal interossei

- **Architecture and Force Capacity:**

- Muscles with a larger CSA generally produce more force because more fibers are packed into the same space
- For example, if Muscle A has a larger angle of fiber insertion, its fibers will be shorter, but more fibers will be packed into the CSA region,

resulting in a larger CSA and greater force production compared to Muscle B (with longer fibers inserting at a lesser angle)


- Force production is proportional to the muscle CSA
- Muscles show architectural specialization, being designed for specific functions
 - **Small muscles are optimised for fine control and dexterity (eg, hands/fingers, eyelids), whereas larger muscles have a greater cross sectional area, optimised for force and power output****

TYPES OF MUSCLE ACTIONS

1. **Isometric**: Muscle length does not change during contraction
 - This occurs when the force developed by the muscle and the load are equivalent, or when the load is immovable
2. **Miometric** (Concentric contraction): Muscle length shortens during contraction
 - This happens if the force developed by the muscle is greater than the load on it
3. **Pliometric** (Eccentric contraction): Muscle length increases during contraction
 - This occurs when the load on the muscle is greater than the force developed by the muscle, causing the muscle to stretch

SKELETAL MUSCLE LENGTH-TENSION RELATIONSHIP

- The amount of force a muscle can produce depends on the overlap between actin and myosin filaments in the sarcomere
 - **Short length**: if the muscle is not stretched, the filaments interfere with one another, and the force output is low
 - **Long lengths**: when the muscle is overstretched, filaments cannot reach each other, so the force output is also low
- ⇒ At **medium lengths** (ie moderate amounts of muscle stretch), overlap between actin and myosin filaments is at its highest, enabling maximum force output

