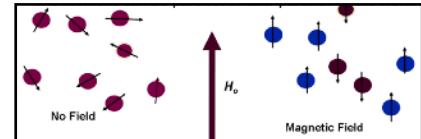
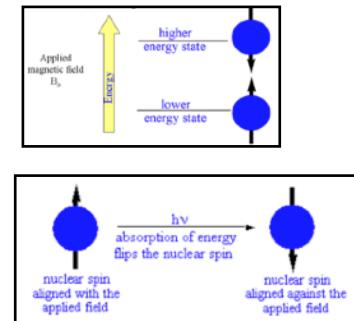


NMR Spectroscopy Part 1 (W1)

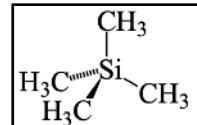
Introduction to NMR Spectroscopy (L1)


What is NMR Spectroscopy?

- A spectroscopic technique that gives us information about the number and types of atoms in a molecule
 - Hydrogen using ^1H -NMR spectroscopy
 - Carbons using ^{13}C -NMR spectroscopy
 - Phosphorus using ^{31}P -NMR spectroscopy
- Horizontal axis: chemical shift (ppm)
- Vertical axis: relative number of hydrogens in the atom (specific to HNMR)


Nuclear Spins

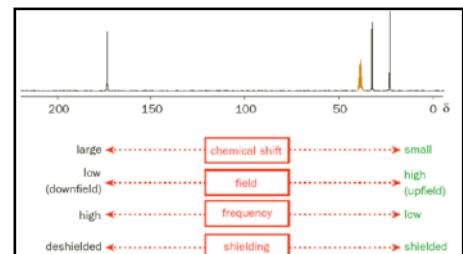
- Nuclear spins in a magnetic field
- A **spinning** charge creates an associated **magnetic field**
- If a nucleus of ^1H is placed in a **strong external magnetic field** (B_0 Tesla, 1T=104 Gauss), its **magnetic moment** will **line up** with the field
- The moment can be **parallel** or **anti-parallel** to the field

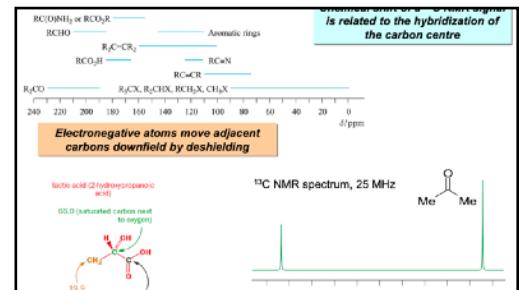

Nuclear Spin

- For ^1H , ^{31}P and ^{13}C , only two orientations are allowed
 - **Lower** energy state: **parallel** to applied magnetic field (B_0)
 - **Higher** energy state: **anti-parallel** to applied magnetic field (B_0)
- Absorption of **radio-frequency** radiation of the appropriate energy **flips** the **nuclear spin**
 - A proton with nuclear spin aligned with the applied field can absorb energy in radio frequency that will flip the orientation

Nuclear spins in a magnetic field

- Shielding of nuclei from an applied magnetic field by electrons
- Small induced magnetic field shielding the nucleus -> neighbouring electrons
- Changes in the **distribution of electrons** around a nucleus **affects**:
 - The **local magnetic field** that the **nucleus experiences**
 - The **frequency** at which the **nucleus resonates**
 - The **chemistry** of the molecule at that atom
 - Variation in frequency is known as the **chemical shift** (δ , delta)
 - The **smaller distribution of electrons** around nucleus -> **larger chemical shift**
 - Occurs when electronegative atoms are near the nucleus, results in **deshielding**


Reference Sample - TMS


- The sample is dissolved in a solvent, most commonly CDCl_3 or D_2O , and **tetramethylsilane, TMS**, is added (shown on right)
 - D = deuterium
- Chemical shift (δ) = $\nu_{\text{sample}} \text{ (Hz)} - \nu_{\text{TMS}} \text{ (Hz)} / \text{operating frequency (MHz)}$
- Example
 - A sample which gives a signal at **54 Hz** when recorded on a **60 MHz** spectrometer will be said to resonate at $(54 \text{ Hz} / 60 \text{ MHz}) = \delta 0.9 \text{ or } 0.9 \text{ ppm}$

$$\text{Chemical Shift } (\delta) = \frac{\nu_{\text{sample}} \text{ (Hz)} - \nu_{\text{TMS}} \text{ (Hz)}}{\text{operating frequency (MHz)}}$$

Ways of describing chemical shift

- **Chemical shift**: small on right, large on left
- **Field**: high (upfield) on right and low (downfield) on left
- **Frequency**: low on right and high on left
- **Shielding**: shielded on right and deshielded on left

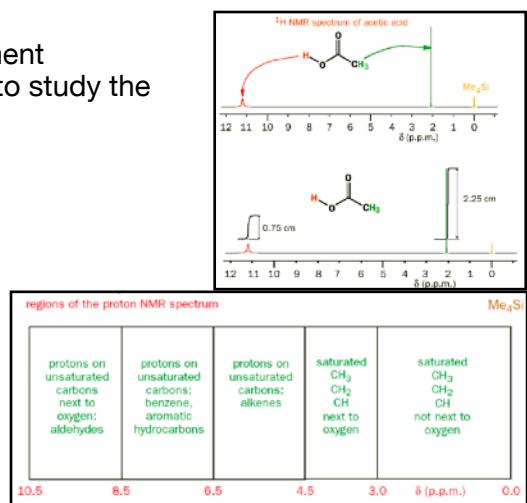
CNMR and chemical shift

- Chemical shift of a ¹³CNMR signal is related to the hybridisation of the carbon centre
- Electronegative atoms move adjacent carbons downfield by deshielding

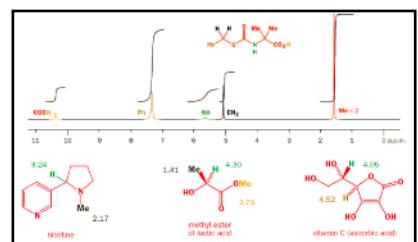
Assigning peaks

- The brown solvent peaks are from DMSO (Dimethylsulfoxide)
- First identify the solvent peaks

The differences between carbon and proton NMR

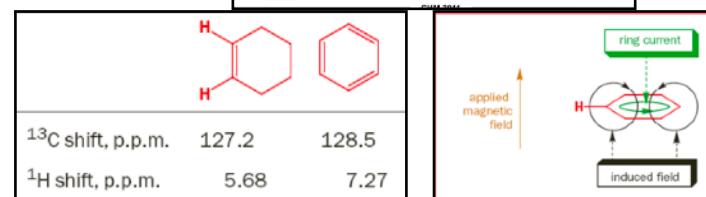

- ¹H is the major isotope of hydrogen (99.985%), ¹³C is a minor isotope (1.1%)
- ¹HNMR is **quantitative**, area under the peaks tells us the **number of hydrogen nuclei**. Same is **not true** for ¹³CNMR spectroscopy
- Protons interact **magnetically ('couple')** to reveal **connectivity structure**. ¹³C is **too rare** for this to be seen
- ¹HNMR shifts gives a **more reliable** indication of local environment
- They are both recorded in the same manner; radio waves used to study the energy level differences of nuclei

HNMR Integration

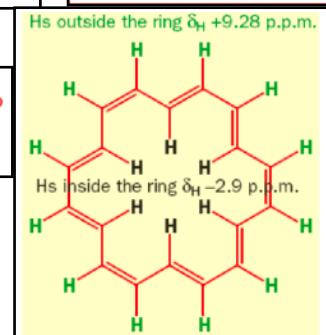
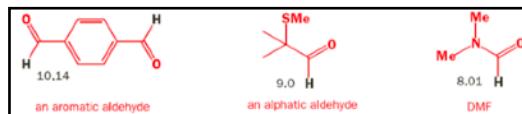

- Integration tells us the number of hydrogen atoms in a peak
- Relative peak area is used

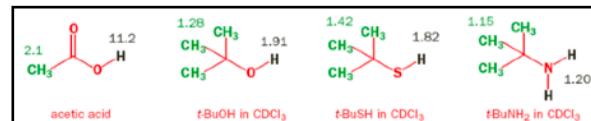
¹HNMR spectra: chemical environments

- **0-3**: saturated, CH₃, CH₂, CH, not next to oxygen
- **3-4.5**: saturated, CH₃, CH₂, CH, next to oxygen
- **4.5-6.5**: protons on unsaturated carbons: alkenes
- **6.5-8.5**: protons on unsaturated carbons: benzene, aromatic hydrocarbons
- **8.5-10.5**: protons on unsaturated carbons next to oxygen: aldehydes



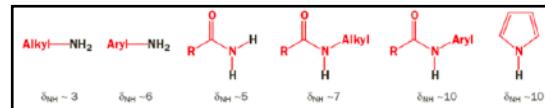
Examples of chemical environments:



The alkene and benzene region


- Benzene has six delocalised pi electrons
- Benzene ring current causes large shifts for aromatic protons
- Hs inside ring show strong shielding by the ring current

The aldehyde region

- An aromatic aldehyde: 10.14
- An aliphatic aldehyde: 9.0
- DMF: 8.01
- Carbonyl group is one of the most electron withdrawing group
- In DMF, H is less deshielded as amide delocalisation feeds electrons into carbonyl group -> more upfield chemical shift

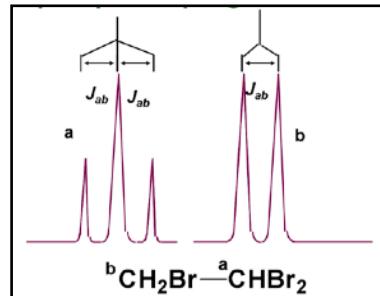


Protons on heteroatoms

- Acetic acid
- *t*-BuOH in CDCl₃: 1.91
- *t*-BuSH in CDCl₃: 1.82
- *t*-BuNH₂ in CDCl₃: 1.20
- Protons directly attached to O, N, or S have variable chemical shifts
 - Less electronegative, less deshielding, smaller chemical shift (δ)

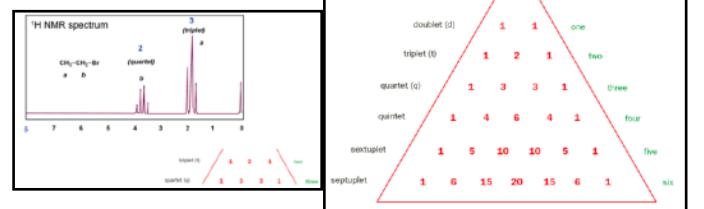
Chemical shifts of NH protons

- OH and NH₂ protons can give broad signals due to exchange processes
- Presence of aryl group increases deshielding of H $\rightarrow \delta$ increases

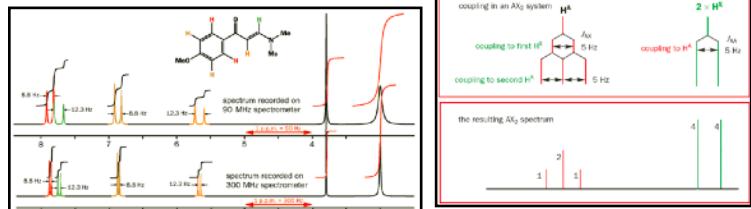


Coupling in the proton NMR spectrum

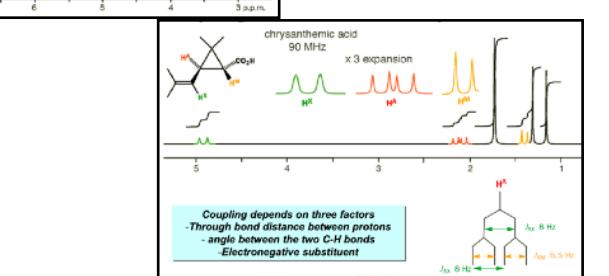
- **Nearby** hydrogen nuclei interact and give **multiple peaks**
- The interaction is known as **coupling**


Nuclear spin-spin coupling

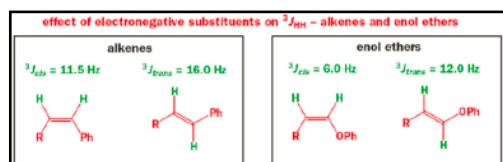
- Chemically equivalent protons show no splitting
 - CCl₂H₂: all protons equivalent = no splitting
- A proton with n equivalent neighbours will be split into $n+1$ lines with **coupling constant J**: Hz equivalent between each split peaks
- Two groups of protons coupled with each other will have the same coupling constant J


Splitting

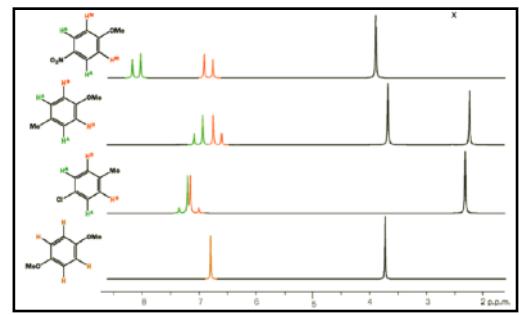
- Multiplicity of signal vs number of neighbours
- The numbers inside the triangle gives the relative intensities of the multiplet signals
- This is all ³J coupling (3 bonds away)


Coupling constant (J)

- Coupling constant (J) is the separation between the peaks in hertz (Hz)
- To determine the coupling constant, determine the difference between the lines (ppm) and divide by the operating frequency (MHz)
- When you change machines the chemical shifts (ppm) and coupling constants (Hz) stay the same


Coupling between different protons

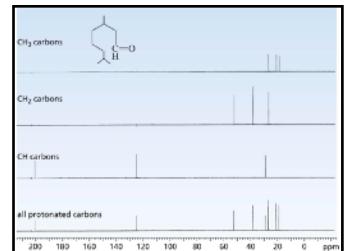
- Coupling depends on three factors
 - Through bond distance between protons
 - Angle between the two C-H bonds
 - Electronegative substituent
- Possible to have 2 unequivalent environments ³J distances from H: Different splitting pattern



Coupling between different protons

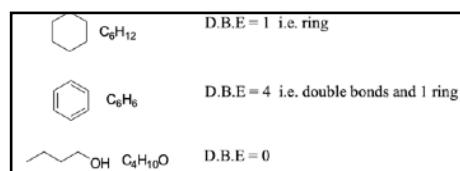
- Open chain single bond (free rotation): J \sim 7 Hz
- Benzene ring longer bond (0.5 pi bond) (60 deg angle): J 8-10 Hz
- Cis alkene double bond (60 deg angle): J 10-12 Hz
- Trans alkene double bond (180 deg angle): J 14-18 Hz
- **Cis/trans position and bond angle effects J coupling**

Examples of coupling between similar protons


DEPT Method

- The DEPT methods use a complex series of pulses in both the ^1H and ^{13}C ranges, with the result that CH_3 , CH_2 and CH signals exhibit different phases
- Signals for **CH3** and **CH** carbons are recorded as **positive** signals
- Signals for **CH2** carbons are recorded as **negative** signals
- **Quaternary** carbons give **no signal** in the DEPT method

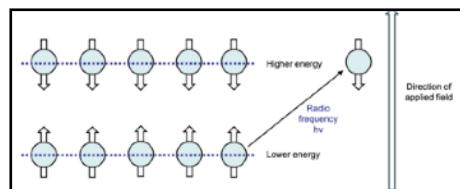
DEPT Experiment:


Summary

- Recognise and interpret a NMR spectrum
 - Identify the difference between ^1H , ^{13}C (DEPT) NMR spectra
- Interpret NMR spectra of molecules with one environment and molecules with more than one environment
 - Understand how NMR can be used to 'count' the number of environments
- Interpret a ^1H NMR spectrum, understand and apply the key features of spectroscopy, chemical shift and the number of protons
 - Shielding - influence on chemical shift, integration - number of equivalent hydrogens

The Chemical Detective

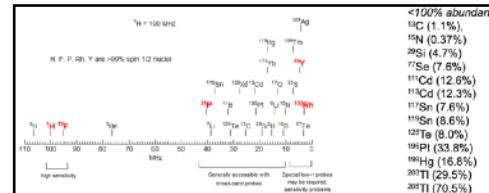
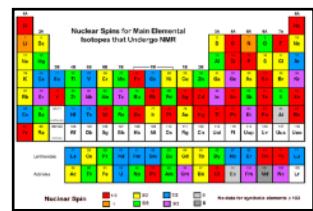
- Deducing the number of Double Bond Equivalents
- DBE = double bond equivalents
- C_6H_{12} : DBE = 1 i.e. ring
- C_6H_6 : DBE = 4 i.e. 3 double bonds 1 ring
- $\text{C}_4\text{H}_{10}\text{O}$: DBE = 0
- DBE is also known as the index of hydrogen deficiency


Multi-Nuclear NMR Spectroscopy (L2)

Nuclear Magnetic Resonance (NMR) Recap

- Spectroscopic technique probing nuclei in a magnetic field
- Nuclei can be probed if they have a non-zero nuclear spin quantum number, I (uppercase i)
- Nuclei are affected by their chemical environment (change in chemical shift) and by nearby nuclei (splitting due to spin-spin coupling by local field)
- Information about the position of the signal and splitting enables us to work out the position of the atom in the molecule

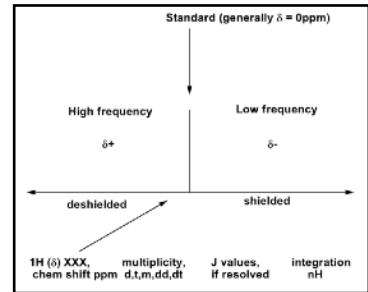
NMR 101



- A spinning charge (e.g. nucleus) creates an associated magnetic field. In the absence of an applied external field, these are **randomly** oriented
- In the presence of a magnetic field the magnetic moments become **aligned** or **anti-aligned** (in the case of a simple $I=1/2$ nucleus, e.g. ^1H , ^{13}C , ^{31}P , ^{19}F) in **equal amounts**
 - Half aligned half anti-aligned
- Energy in the radio frequency range is used to "flip the nuclear spin" (for $I = 1/2$ nuclei). This should be thought of as changing to a higher energy level
 - Lower energy = aligned. Higher energy anti-aligned. Aligned becomes anti-aligned when radio frequency absorbed
- Upon relaxation of the excited nuclei, we detect the emitted radio frequency signal and this is what makes the recorded NMR spectrum
- Although we think of "spins" aligned with or against a magnetic field for $I = 1/2$ nuclei, you should think about this as two allowed energy levels
- These allowed levels are in integer steps between $-I$ and $+I$
- For $I = 1/2$ this means values of $+1/2$ and $-1/2$ (hence we think of with (+) and against (-) the field)

- For $I = 3/2$ there are four allowed values (-3/2, -1/2, +1/2, +3/2) which are equally populated in an applied field. We will look at this next week

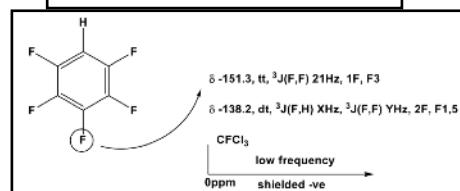
M multinuclear NMR - study of other NMR active elements (P, Hg, F, N)

- Every element has a ground state nuclear spin quantum number (I) with a value of $x/2$ (where x is an integer)
- If an isotope has $I = 0$, it's NMR **inactive**
- ^{13}C , ^1H , ^{31}P are all $I=1/2$
- Limitations:
 - Relaxation times are important for many nuclei (Expert users needed)
 - Very large chemical shift ranges for many nuclei make observation difficult. Can indicate oxidation state
 - Problems with low natural abundance e.g. ^{17}O , ^{15}N
 - Are the compounds stable in solution?
 - Choosing reference compounds can be difficult e.g. secondary references and/or external references
- Isotopes with $I = 1/2$ are the most commonly studied by NMR due to the simpler analysis, especially if the active nucleus is 100% abundant (i.e. ^1H)
- Less abundant nuclei need long collection times or isotopic enrichment

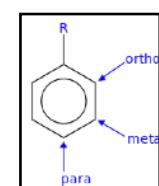

M multinuclear NMR

- The nuclear spin quantum number can be predicted (to some extent) from the relative numbers of nucleons
 - Protons = **even** and neutrons = **even**: $I=0$ (**NMR inactive**)
 - Protons = **odd** and neutrons = **odd**: $I=\text{integer}$
 - Other combination: $I=1/2$ **integer** (1/2, 3/2, 5/2, 7/2)
- Example: ^{12}C has 6 protons and 6 neutrons, therefore not NMR active because $I=0$
- Lots of NMR active isotopes for a given element can make NMR challenging

	Z	N	Abundance (%)	NMR Active?
^{118}Hg	80	118	10	inactive
^{119}Hg	80	119	17	active
^{200}Hg	80	120	23	inactive
^{201}Hg	80	121	13	active
^{202}Hg	80	122	30	inactive
^{204}Hg	80	124	7	inactive


NMR and Structural Information

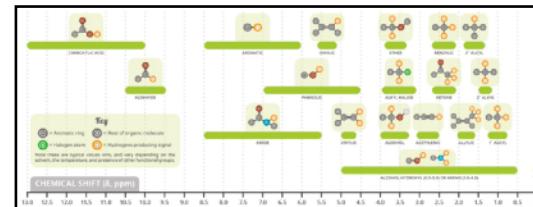
- Structural information can be provided by analysing features of the NMR spectrum
 - **Chemical shift** values - where is the signal?
 - **Multiplicity** - is the signal split?
 - **Coupling constants** - what is magnitude of any splitting?
 - **Integration** (+/-10%) - what is the ratio of areas under signals?


Reporting ^1H NMR Spectra

- Position, multiplicity, coupling, integration, assignment
- e.g. $\text{CH}_3\text{CH}_2\text{OH}$: **1.20 ppm, t, $^3\text{J}(\text{H,H})$ 7Hz, 3H, Me**
- Reporting multinuclear NMR follows the same pattern
- Each nucleus has a separate reference compound
- E.g. ^{199}Hg uses external HgMe_2 . ^{31}P uses external 85% H_3PO_4 .
 - External means that it is not in the tube with the sample

Integration

- For a pure compound, integration of the signals gives the relative amounts of different types of the same nucleus
- Example: $\text{C}_6\text{F}_5\text{H}$ has a 19F NMR spectrum with a 2:1:2 integration for the 3 F resonances, assigned to 2x ortho-F, 1x para-F, 2 x meta-F
- Non-integer integrations can indicate impurities
- Integration only gives relative amounts of the different types of nucleus. 1:2 could be 2:4 or 3:6
- Absolute numbers can be determined by addition of a known amount of a standard

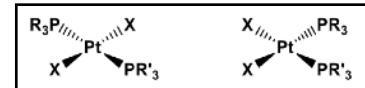

Chemical shifts

- Position of NMR signal gives an indication of the chemical environment. Easy for nuclei such as ^1H for which there are established tables

- The same is true for other relatively common nuclei (¹⁹F, ³¹P) but others are much less well documented, especially metals
- For multinuclear NMR it is normal to compare your experimental data with data for model compounds (closely related compound(s) of known purity). Similar compounds should show similar chemical shift values
- Very large chemical shift ranges exist for some nuclei (e.g., ¹¹⁹Hg, ¹⁹⁵Pt) so you need to know where to look! And for **metals, oxidation state can result in different ranges**

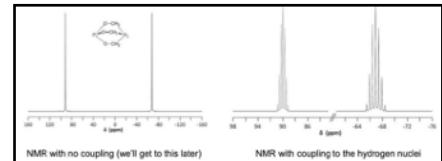
Chemical shifts

- Reported relative to a standard as ppm, so independent of instrument field strength



Coupling and Multiplicity

- The NMR signal for a given atom is affected by the **magnetic environment** provided by **neighbouring atoms**
- This **effect** gets **weaker** with **distance**, typically seen for atoms 2,3, or 4 bonds away
- Referred to as **^xJ coupling**, where x=number of bonds away
- To be more specific, **^xJ_{AB}** where A and B define the atoms involved


Coupling and Multiplicity - Example

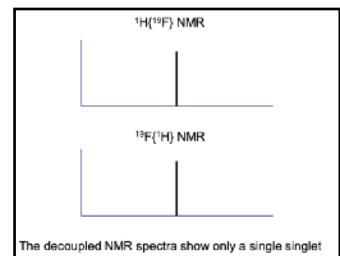
- Given suitable standard compounds, the magnitude of J can be used to establish coordination number stereochemistry, even the donor atoms trans to a particular ligand
- **Trans** has a **larger coupling** than **cis**
- e.g. HPt(PR₃)₃ The P coupling to H in the ¹HNMR spectrum is greater for the trans phosphine
- However, electronic effects can influence the coupling to Pt due to **trans effects** (the observation that certain ligands **increase the rate of ligand substitution** when positioned **trans to the departing ligand**), so can lessen this coupling
- Makes cis and trans non-equivalent

Coupling and Multiplicity - Example

- ³¹P NMR of the compound shown. Which signal is which P?

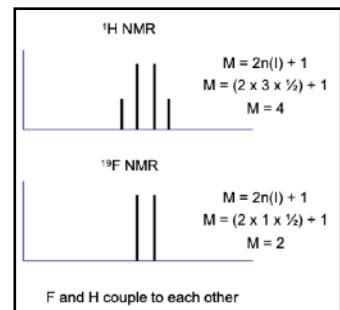
Coupling and Multiplicity

- For organic molecules and ¹HNMR, ³J coupling is most common, e.g. 2-butanol
- Inorganic and organometallic multinuclear NMR can be more complex
- Closer atoms give stronger coupling
- You would have been taught that the multiplicity of the resonance for 1H is given by:
 - M = n + 1
 - where: M is the multiplicity of the resonance, n is the number of coupled atoms
- The general form of this equation is:
 - **M = 2n(l) + 1**
 - Where: l is the nuclear spin quantum number, n is the number of coupled atoms


$$M = 2n(l) + 1$$

Decoupling

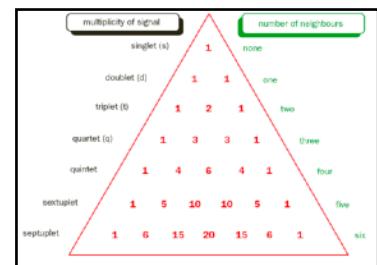
- It is possible, with appropriate programming of the spectrometer, to obtain a spectrum in which heteronuclei show **no coupling** in the spectrum
- This is called a **decoupled spectrum** and can be useful to simplify spectra to aid understanding
- We use the nomenclature **X{Y}** decoupled to mean the spectrum of X which shows no coupling from Y
- E.g. ¹³C{¹H} is the standard carbon spectra that we collect in which we see no effects from coupling to hydrogen


Multiplicity - Decoupled

- Coupling to other nuclei is useful for discerning additional structural information
- Consider trifluoromethane (CF_3H)
 - ^1H : $I = 1/2$ (100% abundance)
 - ^{19}F : $I = 1/2$ (100% abundance)
 - ^{13}C : $I = 1/2$ (1.1% abundance) \leftarrow very low %, in practise we ignore it

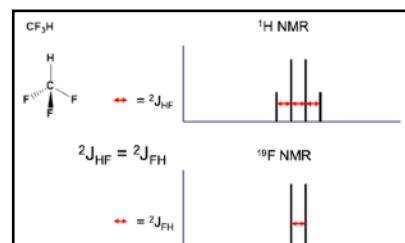
Multiplicity - Coupled

- Coupling to other nuclei is useful for discerning additional structural information
- Consider trifluoromethane (CF_3H)
 - ^1H : $I = 1/2$ (100% abundance)
 - ^{19}F : $I = 1/2$ (100% abundance)
 - ^{13}C : $I = 1/2$ (1.1% abundance) \leftarrow very low %, in practise we ignore it

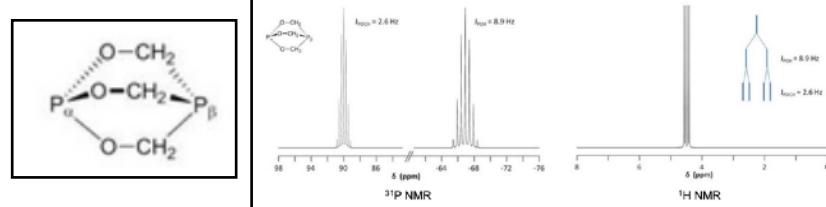


Multiplicity - why is splitting observed?

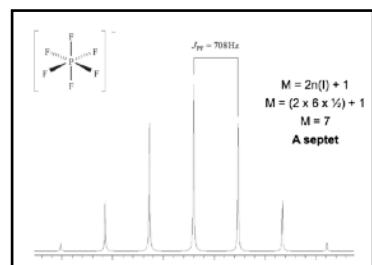
- The combination of possible spin states for the neighbouring atoms results in different microenvironment of the nucleus being probed
- For CF₃H, ¹⁹FNMR will show doublet ($M=2n(l)+1 = 2*1*1/2 + 1 = 2$)
 - There is one hydrogen atom adjacent to the equivalent fluorine atoms, with an equal probability of having spin values of +1/2 and -1/2. This gives the **two combinations/environments** that give the two signals in the splitting
- For CF₃H, ¹HNMR will show quartet ($M = 2*3*1/2+1 = 4$)
 - There are 3 fluorine atoms adjacent to the hydrogen atoms, each with an equal probability of having spin values of +1/2 or -1/2. This gives **four combinations** of possibilities with statistical, non-equal probabilities of occurring


Multiplicity - Intensities

- Relative intensities in multiplets are given by Pascal's triangle (binomial coefficients) for nuclei with $I=1/2$. It is more complicated for higher values of I
- In Pascal's triangle each row is made up from the sums of the numbers on the previous row

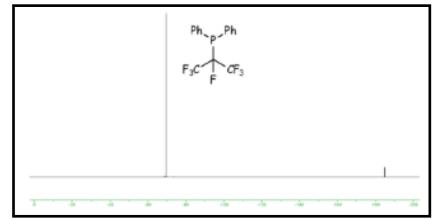

Multiplicity - Coupling Constants

- Coupling constants are measured (in Hz) between any two parts of a peak that comprises multiple signals
- Coupling constants can be measured between any two adjacent parts of the split signal
- Written $\times J_{AB}$ where X=number of bonds and A and B are the atoms
- The effect of the atoms on each other is equal, hence we can determine which signals result from neighbouring atoms
- $^2J_{HF} = ^2J_{FH}$

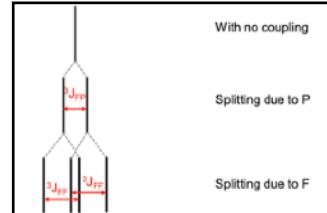
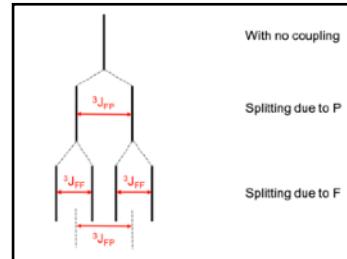

Coupling and Multiplicity - Example

- Coupling between nuclei is the same regardless of which you are measuring
- Right: Doublet of doublets (3J splitting then 4J splitting)
- Left: 1 septet (4J downfield) 1 septet (3J upfield)

Multiplicity - An example


- The PF₆⁻ anion
 - ¹⁹F: I = 1/2 (100%)
 - ³¹P: I = 1/2 (100%)
- **³¹P NMR spectrum** will consist of a (7-line) **septet** with intensities 1:6:15:20:15:6:1 (shown on right). $M = 2 \times 6 \times 1/2 + 1 = 7$

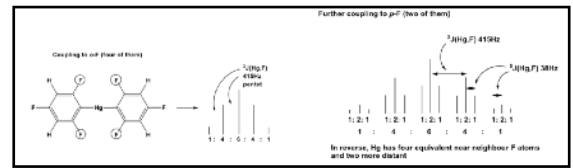
- ^{19}F spectrum will be a **doublet** (coupling to a single P atom)



Multiplicity - A question

- $^{19}\text{FNMR}$ is shown for the molecule below, with two signals for the two chemical environments. Which is which and what splitting would you expect?

Multiplicity - Sequential Splitting

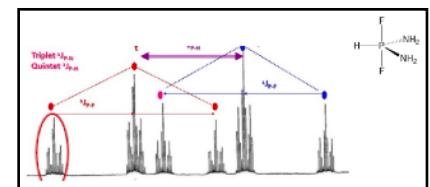
- If a nucleus is coupled to two or more different nuclei then the splitting is sequential
- Coupling constants may not be as obvious if signals overlap. Need to check the other nucleus or atoms to find proper values
- For lone F (left):
 - First no coupling
 - Then splitting due to P ($^2\text{J}_{\text{FP}}$)
 - Then splitting due to F ($^3\text{J}_{\text{FF}}$)
- For F3C (right):
 - First no coupling
 - Then splitting due to P ($^3\text{J}_{\text{FP}}$)
 - Then splitting due to F ($^3\text{J}_{\text{FF}}$)



NMR Spectroscopy Part 2 (W2)

Multiplicity (L1)

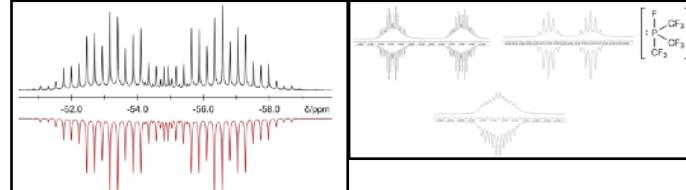
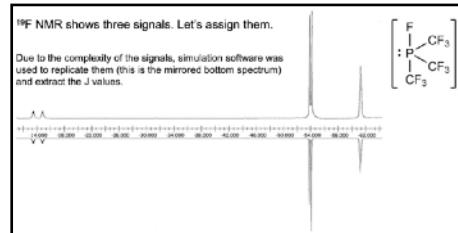
Multiplicity - Coupling to Distant Atoms


- If overlapping can be disentangled, and the resolution of the spectrum is good, the number of more distant atoms can be established
- e.g. $^{199}\text{Hg}\{^1\text{H}\}$ NMR of bis(2,4,6-trifluorophenyl)mercury
- Pentet of triplets
- Initially coupling to ortho-F (four of them so pent), then further coupling to para-F (two of them so triplet via ^5J coupling)
- Basically, Hg has four equivalent near neighbour F atoms and two more distant

Multiplicity - More Complicated Coupling #1

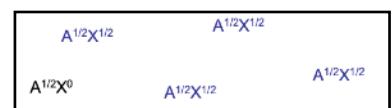
- Consider $\text{PF}_2\text{N}(\text{NH}_2)_2$ enriched with ^{15}N , all nuclei are 100% $I=1/2$. What would the ^{31}P NMR look like?
- A mess! But one we can rationalise

 1. $^1\text{J}_{\text{PH}}$ = doublet from 1H
 2. $^1\text{J}_{\text{PF}}$ = triplet from 2 F's
 3. $^1\text{J}_{\text{PN}}$ = triplet as two N's
 4. $^2\text{J}_{\text{PH}}$ = quintet from 4 H's

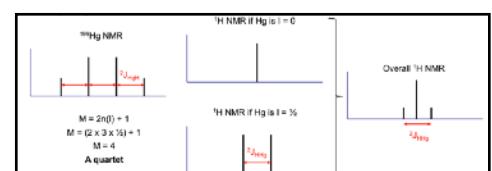



Multiplicity - More Complicated Coupling #1

- Strongest splitting is $^1\text{J}_{\text{PH}}$ with the hydride (^1H) to give a doublet (largest J constant)
- 2 fluorine atoms (^{19}F) cause triplet splitting ($^1\text{J}_{\text{PF}}$)
- Coupling to 2 ^{15}N nuclei give further triplets ($^1\text{J}_{\text{PN}}$)
- Finally, 4 equivalent ^1H nuclei forms quintets ($^2\text{J}_{\text{PH}}$)
- **OVERALL: A doublet of triplets of quintets (90 lines)!**


Multiplicity - More Complicated Coupling #2

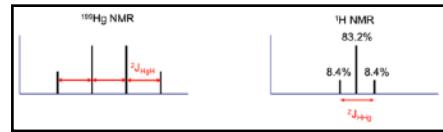
- Here is an example from a recent publication, where ^{31}P and ^{19}F NMR were essential to working out the reactivity and structure
- The compound below is phosphoranide (tetracoordinated P with formal negative charge)
- ^{19}F NMR shows three signals. Lets assign them
- Due to the complexity of the signals, simulation software was used to replicate them (this is the mirrored bottom spectrum) and extract the J values


Nuclei < 100% Abundant

- The situation can be more complicated in systems where there are multiple natural isotopes, i.e. where one active isotope does not have 100% abundance
- Consider a hypothetical molecule **AX** where $A = 100\%$, spin=1/2; $X = <100\%$ spin 1/2
- **X** spectrum not affected (split by 100%, $I=1/2$ nuclei), but the **A** spectrum is more complex as there will only sometimes be splitting with X
- Example:
 - If X was 80% $I=1/2$, 20% $I=0$ then the distribution of molecules would look like this... 20% of the time it will be X with spin=0 \rightarrow no NMR activity
 - A is 100% $I=1/2$
 - And we would expect the A NMR to be a superposition of the two types of molecules

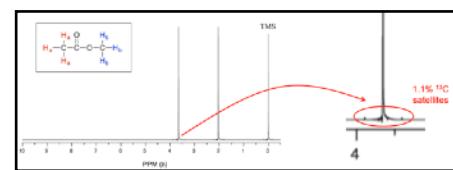
Nuclei < 100% Abundant - Example

- The example is methyl mercury chloride, MeHgCl
- ^{199}Hg (16.8%) $I=1/2$ (other isotopes have spin 0 or ignore)
- ^1H (100%) $I=1/2$
- ^{199}Hg NMR will be unchanged: a quartet
- For ^1H NMR if Hg is $I=0$ then singlet, if Hg is $I=1/2$ then doublet

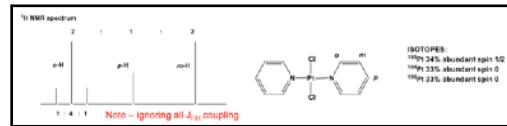


with $^2J_{\text{HHg}}$ coupling

- Overall ^1H NMR will be triplet: combination of both singlet and doublet


Nuclei < 100% Abundant - Example

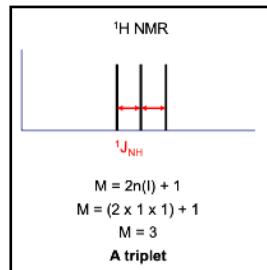
- Thing to note about the ^1H NMR of MeHgC
 - The **ratio of integrals** of the peaks reflects the **abundance** of isotopes (not a 1:3:1 triplet)
 - The splitting between the “satellite peaks” is the 2J coupling (they are a doublet)
 - Confirmation that this is 2J coupling comes from comparison with ^{199}Hg spectrum


Nuclei < 100% Abundant - ^{13}C

- You can see splitting to non-100% abundant nuclei in ^1H NMR of organics, but this is typically ignored
- Due to 1.1% ^{13}C satellites

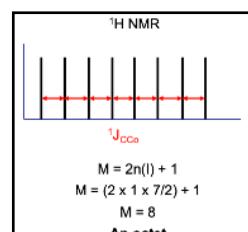
Nuclei < 100% Abundant

- Sometimes the presence of satellites simply helps to confirm connectivity
- Ratio of spin active Pt isotopes ($I=1/2$) to non active ($I=0$) is 1:2, but observed as 1:4 in the spectrum because the resonance is a 1:1 doublet superimposed over a singlet (i.e. 16:67:16)
- Observations of Pt satellites on the ortho-H signal establishes that the pyridine is bound to Pt
 - $^3J(\text{Pt},\text{H}) \sim 34 \text{ Hz}$

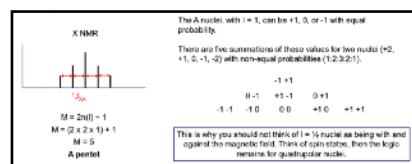


Quadrupolar Nuclei ($I>1/2$)

- Nuclei with $I > 1/2$ are called **quadrupolar** nuclei
- NMR of these nuclei can be a bit trickier, especially ratios of peaks within multiplets
- Common quadrupolar nuclei:
 - D (^2H) $I = 1$; ^6Li $I=1$; ^{14}N $I=1$; ^{11}B $I=3/2$; ^{59}Co $I=7/2$
- Although trickier in concept, the standard rule for calculating coupling and multiplets still holds true, although Pascal's triangle no longer works
- $M = 2n(I) + 1$


Quadrupolar Nuclei ($I>1/2$) - Example 1

- The ^1H NMR of ammonia, containing 100% ^{14}N ($I=1$) is a peak with multiplicity of 3, a triplet
- The relative intensities of the peaks within the signal do **not** follow Pascal's triangle for quadrupolar nuclei
- ^1H is coupled to ^{14}N with the splitting due to the spin states that the nitrogen nucleus can adopt
- These states are in intervals of 1 between +1 and -1
- So, for $I=1$, ^{14}N can be **+1, 0, -1** with **equal probability**
- Hence, **three equivalent peaks** in the signal


Quadrupolar Nuclei ($I>1/2$) - Example 2

- The ^{13}C NMR of $[\text{Co}(\text{CO})_4]$ containing 100% ^{59}Co ($I=7/2$) is a peak with a multiplicity of 8, an octet
- Remember, spin states are in intervals of 1 between +1 and -1
- For $I = 7/2$, ^{59}Co can be: **+7/2, +5/2, +3/2, +1/2, -1/2, -3/2, -5/2 or -7/2** with equal probability
- Hence, **8 equivalent peaks in the signal**

Quadrupolar Nuclei ($I>1/2$) - Example 3

- An imaginary compound A-X-A, where A has $I=1$ and X has $I=1/2$. What is the X NMR spectrum
- The A nuclei, with $I=1$, can be **+1, 0, -1** with **equal probabilities**
- There are **five summations** of these values for **two nuclei** (+2, +1, 0,

