

Study Design, Sampling and Bias (W1)

Study Design (L1)

What causes lung cancer?

- Number of known cases rose dramatically in second half of 19th century, even more dramatically 1900-1910
- In 1900 only 140 cases documented in medical literature
- In 1910 Dr George Dock invited the two senior classes in medical school at Washington University to witness an autopsy: "the condition was so rare he thought we might never see another case as long as we lived."
- By the 1920s it was becoming common
- Today it kills about 1.5 million people per year globally
- **What caused the dramatic increase?**

Possible causes

- Few cigarettes before WWI
- Increase in air pollution caused by industry
- Asphalting roads
- Increase in automobile traffic
- Exposure to gas in WWI
- Influenza to gas in WWI
- Influenza epidemic in 1918
- Working with benzene or gasoline
- **How would you find out?**
- **Mueller, 1939:**

	Absolute number		Percent	
	Lung cancer patients	Healthy	Out of 86 lung cancer patients	Out of 86 healthy men
Extreme smoker (daily consumption of 10-15 cigars, more than 35 cigarettes, more than 50 g of pipe tobacco)	25	4	29.07	4.65
Very heavy smoker (7-9 cigars, 26-35 cigarettes, 36-50 g of pipe tobacco)	18	5	20.93	5.81
Heavy smoker (4-6 cigars, 16-25 cigarettes, 21-35 g of pipe tobacco)	13	22	15.12	25.58
Moderate smoker (1-3 cigars, 1-15 cigarettes, 1-20 g of pipe tobacco)	27	41	31.39	47.68
Non smoker	3	14	3.49	16.28
Altogether	86	86	100.00	100.00

Questions

- Is this a good experimental design?
- What do the results show?
- Does this analysis settle the matter?

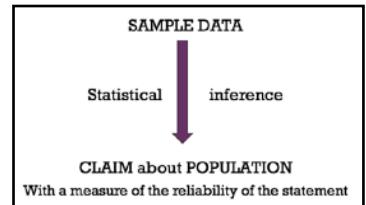
Criticisms of Mueller, 1939

- Occupation and the flu are discussed for the cases only
- Unexplained assumptions about the smoking habits of 20 cases
- Silent about the sampling, recruitment and interview modes of the "healthy" subjects
- Selection and differential misclassification cannot be ruled out

Statistic is a game changer

- So many issues in the news can be settled with statistics
 - Does smoking cause lung cancer?
 - Do vaccinations cause autism?
 - Do wind farms cause sickness?
 - Do cell phones cause brain cancer?
 - Does homeopathy work?
- The answers do not have to remain matters of opinions
 - Statistics can answer these questions
 - They remain contentious because people don't understand how statistics work

Statistics is...


- Important in politics
- Important in agriculture
- Important in medicine
- Important in engineering
- Important in business and finance
- Important in science
- **Statistics is the science of collecting, organising and interpreting numerical facts, which we call data**

Statistics is...

- 'the science of quantitative reasoning' — of ways of thinking about and working with numerical facts and ideas
- Is a collection of procedures and principles for gathering data and analysing information in order to help people make decisions when faced with uncertainty
- But the science of statistics 'has much more in common with philosophy than it does with accounting'

Statistical design of experiments

- Sample data
- Statistical inference of sample data
- Claim about population
 - With a measure of the reliability of the statement (CI)

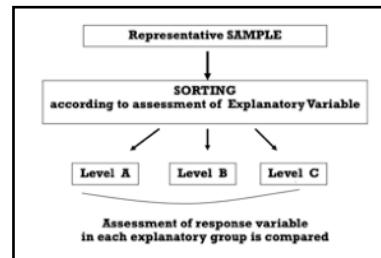
Possible Steps in any study

- **AIM:** exploratory or a specific question?
- What will I measure? What **VARIABLES**
- How will I choose the subjects? - **SAMPLING**
- What is needed for the **DATA COLLECTION?**
- SUMMARY of data and **STATISTICAL ANALYSIS (INFERENTIAL TESTS)**
- Interpretation of data and **CONCLUSION** or DECISION

Type of variable

- **Explanatory (independent)** variable: may explain or cause a change in another variable, may be manipulated or set at a value
- **Response (dependent)** variable: the variable measured to see if it changes in response to another variable
- **Confounding** variable: a variable that is thought/**known** to influence both the explanatory and response and so confuses the interpretation of any relationship between them
- **Lurking** variable: as confound but **NOT known** beforehand

Simpson's paradox

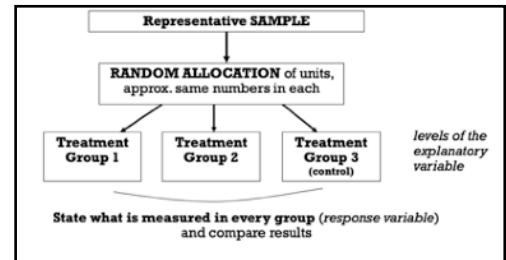

- Rare cases of misleading information
- In 1973, University of California, Berkeley was sued for **bias against women** who had applied for admission
- Problem is unfair averaging over different groups - better to compare % or average within each level
- Overall % could be misleading... direction of a relationship is reversed within sub-groups compared to the overall total group
- Arises from influence of a Confounding Variable
- Example 4: 47% of men successful, but only 31% of women overall in being admitted to a university BUT women applied in different faculties to men (ones where admission was more difficult) and were more successful than men there!

Types of study - **OBSERVATIONAL**

- **No manipulation** of the factors under investigation
- No random assignment of units to any specific treatment
- Can be very informative and is the only way possible if:
 - Ethical considerations preclude manipulation
 - Want to see what happens in a natural setting, without contrived involvement
- Causation is difficult to establish - too many uncontrolled confounding, lurking variables
- Special type of **observational study: case-control study**
- Often seen in medical studies where cases of a disease are compared with others who are known not to have the disease (control group)

Observational Study Schematic Layout

- Representative **sample**
- **Sorting:** according to assessment of explanatory variable
 - Level A, B and C


- **Assessment** of response variable in each explanatory group is compared

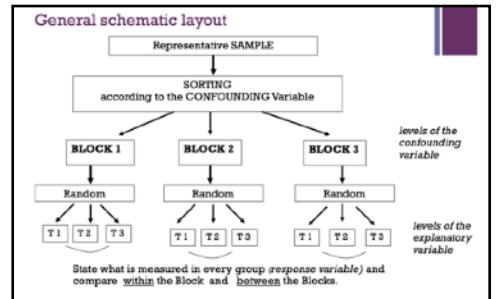
Types of study - EXPERIMENTAL

- Do have **active imposition** of a treatment level on the subject
 - Different values of explanatory can one set or controlled
- Do randomly assign units to a specific treatment group
- Measure the responses for each treatment group
- "Cause and effect link" more likely to be established

Simple randomised experiment

- General schematic layout:
- Representative sample
- Random allocation of units, approx same numbers in each
 - Treatment Group 1, 2 and 3
- State what is measured in every group (Response variable) and compare results

Types of study - EXPERIMENT


- Major features of a randomised experiment are:
- **CONTROL** - "absence", placebo, **blinding**
- **RANDOMISATION** -> all treatment groups have similar background, minimises bias
- **REPLICATION** - sample size sufficient, each treatment group was >1 unit, minimises random error
- **BLOCKING** - according to a confounding variable to "control"

Example 3: Health study

- 21,996 male physicians, 2 (different looking) drugs efficacy?
- 2-factorial experiment, random assignment to 4 treatment groups:
- Response variables: heart attack, rates of cancer after period of time
- Controls?
- Randomisation?
- Replication?

Aspirin + Beta carotene	Aspirin + Placebo
Beta carotene + Placebo	Placebo + Placebo

Blocked Random Experiment: General schematic layout:

Special forms of Experimental Design

1. Factorial Experiments:
 - Vary more than 1 factor at a time - time and cost considerations
 - Can see the interactions between different explanatory variables
2. Repeated-measures designs:
 - Blocks = individuals, and
 - Units = repeated time periods in which receive varying treatments
3. Matched-Pair designs
 - Either two matches individuals or same individual receives each of two treatments
 - Important to randomise order of two treatments and use blinding if possible

Summary of Lecture 1

- Types of variables:
 - Explanatory
 - Response
 - Confounding (lurking)
- Types of Study:
 - Observational Study
 - Experiment
- Design Features of Experiments:
 - Control (e.g. placebo)
 - Randomisation
 - Replication
 - Blocking

Sampling and Randomisation (L2)

Shere Hite and female sexuality

- Shere Hite is a sex researcher best known for her research into female sexuality
- Her research method involved distributing huge numbers of surveys (~100,000) to women's organisations and analysing the answers of those who responded
- In one study on marriage satisfaction among women
 - 98% reported dissatisfaction
 - 75% reported extramarital affairs
 - 4% given the survey responded
- Some criticisms:
 - Women who were dissatisfied were more motivated to respond
 - Distribution to women's organisations
 - Long questions and responses bias towards atypical respondents
 - Leading questions
- Some advantages:
 - Responses are more likely to be truthful (?)
 - Non-laboratory setting

Some important terminology

- **Population** -> parameters
 - The larger group of units about which **inferences** are to be made
- **Sample** -> statistics
 - The smaller group of units actually measured
- Even a small sample can be used to make inferences about a much larger group or the population
- If the sample chosen can be considered to be truly **representative** of that population with regard to the questions of interest

Advantages of a Sample Survey over a Census

- **Sometimes a census isn't possible**
 - When measurements destroy units
- **Speed**: especially if population is large
- **Accuracy**: devote resources to getting accurate sample results
- **Cost**: less costly and less time than census

Sampling Design

- The sampling process comprises several stages:
 - Defining the population of concern. The entire group of objects or people about which information is wanted is called the **population**
 - Individual members of the population are called **units**
 - A **sample** is a part of the population that is actually observed in order to gather information
- Specifying a **sample frame**, that is an available list that represents the population. A simple one is the electoral roll or a telephone list
- Specifying a **sampling method**, which can be either haphazard and convenience styles to those based on probability and randomness)This will be the major focus of this lecture)
- Determine the **sample size** in order to achieve a desired accuracy (in general the **error** is proportional $1/\sqrt{n}$, where n is the sample size)
- Implementing the sampling and data collecting, and
- Applying statistical description and inference to the sample statistics (latter parts of this course)

Types of sampling:

Convenience or haphazard samples (1)

- Problems with bias:
- Selection bias
 - Voluntary response bias
 - Non-response bias
- Undercoverage bias (similar to selection bias)
- Questionnaire wording

Probability samples (2)

- Each member of the population has a known chance of being selected
- This requires effective randomisation of the population list

Simple Random Sampling

- All units in population have the **same chance** of being in the sample (uniform distribution), and
- Every conceivable group of units of the required size has the **same chance** of being the selected sample (a completely randomised sample)
- Usually representative IF population is relatively homogenous

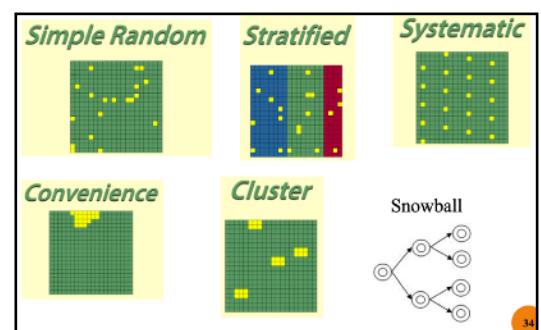
Other probability sampling methods

- Stratified random sampling
- Cluster sampling
- Systemic sampling
- Multistage sampling
- Why not use simple random sampling in all situations?
- Not always practical or best representation of all

Stratified Random Sampling

- Better representation when there are subgroups for the feature of interest that are:
 - Different to each other (heterogeneous), but
 - Similar within each sub-group (homogenous)
- With a simple random sample it is possible to be biased towards one section of population. This is the nature of randomness!

Stratified Random Sampling Procedure


1. Sort population into the sub-groups according to this known confounding variable
2. Randomise each sub-group
3. Select a simple random sample from each sub-group
 - Sample size in each?
 - Simple way: equal amounts in each stratum... not usual
 - Proportional to size of each stratum in population... simplest and reasonably accurate
 - Proportional to the variability within each stratum... most accurate, but not easiest
4. Combine to make the total representative sample

Other probability sampling

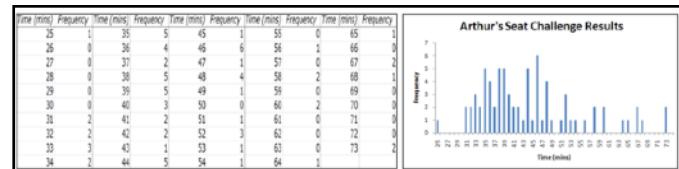
- Cluster sampling
 - Separate sample in to clusters for convenience
 - Randomly select 1 or more clusters and sample all in it
- Systematic sampling
 - Randomly select one individual in population and then every nth on list to achieve a total sample size
- Multistage sampling
 - For large national surveys
 - Combination of sampling types, e.g. stratify by religion, then by income level within region... take one area cluster in that region for each income

Summary of Lecture 2

- Population vs Sample
- Types of Sampling
 - Haphazard
 - Simple Random Sampling
 - Stratified Random Sampling
 - Cluster Sampling
 - Systematic Sampling
 - Multistage Sampling
- Survey bias: Selection bias, undercoverage, non-response, response bias, questionnaire wording

Variables and Distributions (L3)

Looking at Data — Variables


- Any set of data contains information about some set of **individuals**
- This information is organised in **variables**

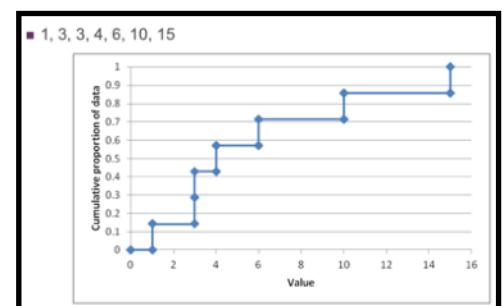
Variables

- **Quantitative variables** have **numerical** values taken on each individual
 - Examples: height, number of siblings, fastest speed driven
 - Averages and other computations make sense
- **Categorical variables** are **group** or **category** names that don't necessarily have logical ordering
 - Examples: gender, eye colour, country of residence
 - Sometimes encoded numerically e.g. Female = 1, Male = 0
 - Categorical variables such as gender can't be averaged
- **Ordinal variables**: Categorical variables that have a **logical ordering**
 - Examples: t-shirt size (S, M, L, XL), grade achieved (N, P, C, D, HD)
- **Nominal variables**: Categorical variables that have no logical ordering
 - Examples: hair colour, nationalities

Distributions

- Two sets of numbers
 - Values a variable may take
 - Frequency with which it takes them
- Histogram - displays this **frequency** distribution information

Important features of distributions


- **Location**: Around what value are the data located?
 - E.g. centre (median)
- **Spread**: What is the variability among the data values?
 - Are there any deviations? Gaps? Outliers?
- **Shape**: What is the distribution of the data?
 - Unimodal? Multi-modal?
 - Symmetric? Skewed?

Median and Quartiles

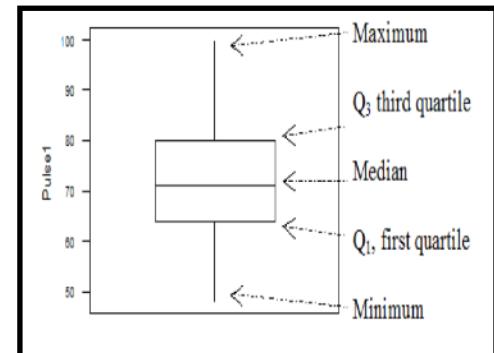
- **Median**: The median, M , is the midpoint of a distribution, the number such that half the observations are smaller than it and the other half are larger. It is the 50th percentile
- **First quartile**: The first quartile, Q_1 , has 25% of the data below it and 75% above it. It is the 25th percentile
- **Third quartile**: The third quartile, Q_3 , has 75% of the data below it and 25% above it. It is the 75th percentile

Quantiles (Percentiles)

- A **quantile** is a value that is greater than a given **proportion** of the data
- When the **proportion** is expressed as a **percentage**, the value is called a **percentile**

Cumulative distributions:

A rule for quartiles


- Calculate $0.25n$, where n is the number of values
- If it's **an integer**, count off that many values in the ordered list. Q_1 is halfway between that **value** and **the next**
 - e.g. 1,3,4,4,6,10,15,126 contains $n = 8$ values
 - $N/4 = 2$ is an integer, So Q_1 is halfway between **second** and **third** values, i.e. 3.5

- If its **not an integer**, **round up** and count off that many values in the ordered list. Q1 is that value
 - E.g. 1,3,3,4,6 contains n=5 values
 - $N/4 = 1.25$, so Q1 is the **second** value, i.e. 3

A rule for quartiles

- For Q3, count the same number of values as for Q1 backwards from the largest value
 - E.g. 1,3,4,4,6,10,15,126 contains n = 8 values
 - $N/4 = 2$ is an integer, so Q3 is halfway between second and third last value, i.e. 12.5
 - E.g. 1,3,3,4,6 contains n = 5 values
 - $N/4 = 1.25$, so Q3 is the second last value, i.e. 4
- Same rule works for any quantile:
 - Calculate **np**, where $p < 0.5$ (percentile)
 - If **np** is an **integer**, take the **midpoint** between that **value** and the **next** if not **round up** and take that value

Boxplots (preview):

Measuring Spread

- Interquartile Range **IQR = Q3-Q1**
 - In pulse data: $IQR = 80 - 64 = 16$
 - **Middle 50% of data has this spread**
- Range = max - min
 - In pulse data: Range = $92 - 48 = 44$
 - (Not as useful as IQR)

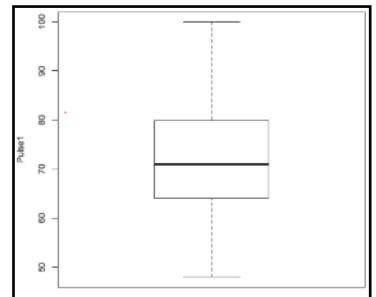
Quartiles in Excel

- Investigate the built-in function wizard, Fx
 - `=QUARTILE(data cell range, x)`
 - If $x=0 \rightarrow$ minimum
 - If $x=1 \rightarrow$ 1st quartile
 - If $x=2 \rightarrow$ 2nd quartile (MEDIAN)
 - If $x=3 \rightarrow$ 3rd quartile
 - If $x=4 \rightarrow$ maximum
 - e.g. Pulse data set
 - Median Pulse 1 is `=QUARTILE(A2:A93,2) = 71`

Summary of Lecture 3

- Variables
 - Quantitative
 - Categorical (ordinal)
- Distributions
 - Values
 - Frequencies
- Histograms
- Median, Quartiles, Quantiles
- Interquartile range

Quantitative Data, Linear Transformation & Cat. Data (W2)

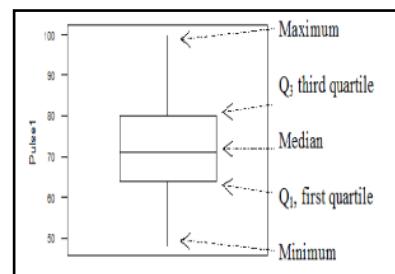

Quantitative Data (L1)

Five-number Summary

- The **five-number summary** of a distribution consists of the median, M, the quartiles Q1 and Q3 and the smallest and largest observations written in the order:
 - **Minimum, Q1, M, Q3, Maximum**
- Example: The five-number summary for our Pulse1 data is: (48, 64, 71, 80, 100)

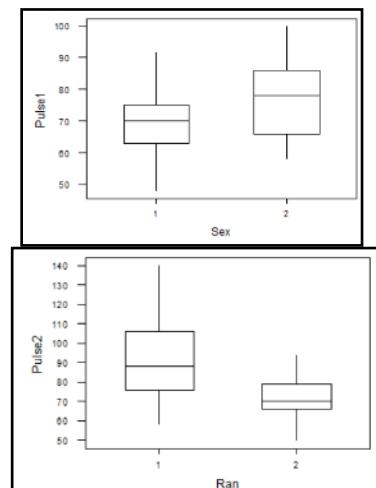
Box plots - visual representation of a distribution (5-number summary)

1. Label a vertical (or horizontal) axis with numbered scale from min to max
2. Draw box with lower end at Q1 and upper end at Q3
3. Draw a line through the box at the median
4. Place a dot at each of minimum and maximum
5. Check for outliers: Locate the **lower boundary** at **(Q1-1.5xIQR)** and the **upper boundary** at **(Q3+1.5xIQR)**. All data values outside these are "outliers". Mark each by an asterisk
6. Draw a line from Q1 end of box to smallest data value inside the boundary. Draw a line from Q3 end of box to largest data value inside the boundary
- A central box spans the quartiles, and hence the middle half of the observations lie in this box



Outlier check

- Pulse1 five-number summary: (48, 64, 71, 80, 100)
- Observations more than $1.5 \times \text{IQR}$ outside the central box are plotted individually as possible outliers
- Upper boundary is $Q3 + 1.5 \times \text{IQR}$
- Lower boundary is $Q1 - 1.5 \times \text{IQR}$
- Any outliers?


Box plots reveal:

- The centre of the distribution: the median
- The spread of the distribution: the interquartile range (IQR)... the middle 50% of data
- Symmetry or Skewness (How?)
- Outliers (How?)

Comparing Distributions

- Compare male and female resting pulses
- To compute 5-number summary
 - Sort the data according to 'Sex' (and optionally by 'Pulse1' too)
 - Use =QUARTILE(cell ranges) for the pulse1 of each sample: male(1) and female(2)
- Male five-number summary:
- Female five-number summary:
- To compare pulse rate after running with no running
 - Sort both columns by 'Ran' (and optionally by Pulse2 too) and obtain the separate five-number summaries
 - Use comparative box-plots

Outliers: what to do about them?

- Outlier = data point not consistent with the bulk of the data
 - Look for them via graphs, esp. box plots
 - Can have big influence on conclusions
 - Can cause complications in some statistical analyses
- Cannot discard without justification: not necessarily incorrect values
- Possible reasons for outliers and reasonable actions

- Mistake in measurement or data entry
- Individual in question belongs to a different group than bulk
- Outlier is legitimate data value - represents natural variability. Values may not be discarded — they provide important information about location and spread
- “Errors” should be approximately symmetric once outliers are excluded

Mean

- Another measure of **central tendency** (alternative to the median) is the **arithmetic mean**
- If n observations are denoted by $x_1, x_2, x_3, \dots, x_n$, their sample mean or average is
 - $\bar{x} = \frac{1}{n}(x_1 + x_2 + x_3 + \dots + x_n)$
- Note the “**overbar**” notation... **SAMPLE MEAN**

If n observations are denoted by $x_1, x_2, x_3, \dots, x_n$, their **sample mean** or **average** is

$$\bar{x} = \frac{1}{n}(x_1 + x_2 + x_3 + \dots + x_n)$$

or

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

Example: Exercise data-rainfall

- Months 1-5: 31, 35, 29, 42, 33mm
- Months 6-11: 31, 35, 36, 30, 37, 35
- In excel: arithmetic mean =AVERAGE(cell range)
- BOTH samples have the same mean here (34mm)
- BUT **DIFFERENT SPREADS** or deviations from the mean: **STANDARD DEVIATION**

Variance and Standard Deviation

- The **Variance** is defined as the **mean squared-deviation**. This should mean dividing by the number in the sample. In fact we divide by **1 less** (otherwise we would tend to underestimate the true variability)
- The **sample variance** of n observations $x_1, x_2, x_3, \dots, x_n$ is:
- The **sample standard deviation**, s , is the **square root** of the **variance** (s^2)
 - Variance = s^2
- Has the same unit of measurement as the original observation. You should calculate x (overran), s using a scientific calculator

The **Variance** is defined as the mean squared-deviation. This should mean dividing by the number in the sample. In fact we divide by 1 less (otherwise we would tend to underestimate the true variability).

The **sample variance** of n observations $x_1, x_2, x_3, \dots, x_n$ is

$$s^2 = \frac{1}{n-1} [(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2]$$

or

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$$

The **sample standard deviation** s is the square root of the variance s^2 , and has the same unit of measurement as the original observations. You should learn how to calculate s using a calculator or software.

Sample Standard Deviation, s

- For Months 1-5 calculated in lecture notes, $s=5$
- For Months 6-11, variance, $s^2 = 8$

Why is variance calculated using $n-1$ instead of n ?

- Theoretical explanation: can show that if we:
 - Perform the experiment many times
 - Calculate sample variance each time using n instead of $n-1$
 - Average the variance estimates over the many experiments
 - We get approximately $(n-1)/n$ times the true variance
- We say that the estimate is **biased by a factor of $(n-1)/n$**
- **Population Variance vs Sample Variance**

- **Population variance**, $\sigma^2 = \frac{1}{n} \sum (x_i - \bar{x})^2$
- **Sample variance**, $s^2 = \frac{1}{n-1} \sum (x_i - \bar{x})^2$

Robust Statistics and Linear Transformation (L2)

Robust Statistics

- Robust statistic: a statistic not much affected by outliers
- For position: **median** or mean?
- For spread: **IQR** or range or standard deviation?
 - Don't change with outliers

Example: Travel time data

- Met travel times (mins)
- Are there any outliers?
- Calculate median, quartiles, IQR, mean, standard deviation for both travel time data sets: with and without outliers
- Which statistics are more robust? **Median, Q1, Q3, IQR**