

Motor Units and Control of Force (W6)

- The nervous system is a monitoring and control system
- Stimulus: internal (food in intestine) or external (visual)
- Response could be directed: internally (void bladder) or externally (move body)
- High level of sophistication needed for control, initiation, planning of movements
- Low level of sophistication needed for muscle substructure (within muscle cells)

Lower (ALPHA) motor neurons (the neurons that directly innervate (supply with nerves) muscle

- Involved in all movement (voluntary and reflexive)
- Directly innervate muscle
- Cell bodies located in spinal cord

Muscle fibres have 2 special properties:

1. They can change length
2. They can generate force

The motor unit and the motor pool

- **Motor unit** = 1 alpha motor neuron + many muscle fibres that it innervates
- Small motor units: <10 muscle fibres (fingers, eyes)
- Large motor units: >1000 muscle fibres (calf)
- **Motor neuron pool** = collection of all alpha motor neurons that innervate a single muscle

Controlling force generation - RATE CODING

- **Force summation** = when responses to individual APs merge
- **Unfused tetanus** = oscillatory force generation
- **Fused tetanus** = smooth force summation
- As AP rate increases in a motor neurone, the amount of force generated over time increases

Controlling force generation - SIZE PRINCIPLE

- For constant APs, the smallest motor and associated muscle fibres are activated first. When AP rate increases, it will recruit larger neurons.
- As more neurons are activated, this leads to more force being generated
- Small and large motor units
- To generate graded force, small motor units are recruited first, followed by larger motor units

Small motor neurons have higher membrane resistance and reach threshold more easily

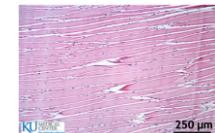
- Smaller motor neurons = small SA = higher membrane resistance
- Smaller neurons tend to have larger EPSPs
- Ohms Law: Change in V (membrane) = $R \cdot I$
- Small motor neurons reach spiking threshold more easily

Proportional Control

- **Inverse** relationship between the number of **motor units** in a muscle and their **force generating capacity**
- Many small motor units; progressively fewer large motor units
- we want control for smaller forces, therefore less muscle fibres but more motor units, but for larger forces we want less control so more muscle fibres but less motor units

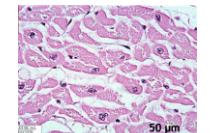
Properties and types of muscle

Properties:


- 1) Generate force
- 2) Shorten

Types of muscle:

- 1) **Skeletal** = striated muscle under voluntary control
- 2) **Cardiac** = striated muscle under involuntary control
- 3) **Smooth muscle** = involuntary control


Skeletal muscle contains long, striated fibres

- Each cell has multiple nuclei on periphery of cell body
- Striations and orderly structure
- Contractions occur in a single direction

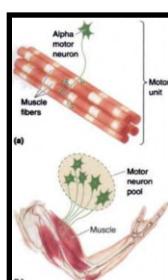
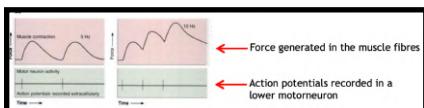
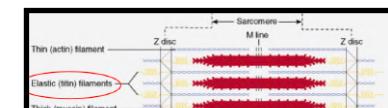
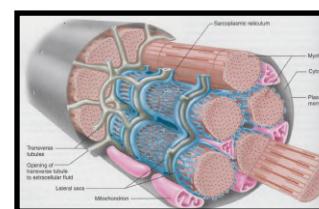
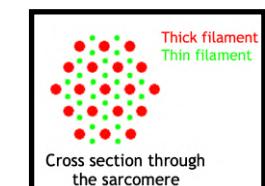
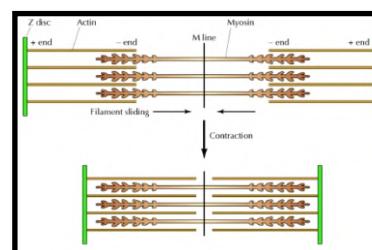
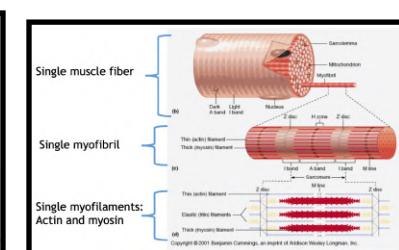
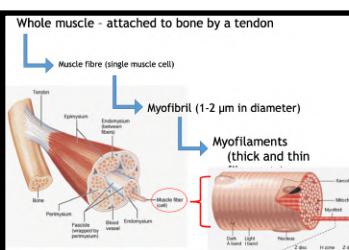
Cardiac muscle contains branched, striated fibres

- Usually one central nucleus per muscle fibre
- Striated and unordered structure
- There is no single direction of contraction

Smooth muscle has no striations

- Single nucleus per fibre
- No orderly direction
- The muscle is not under voluntary control

Functional structure of skeletal muscle









- Whole muscle - attached to a bone by a tendon
- Muscle fibre (single muscle cell), myofibril (1-2 microns in diameter)
- Myofilaments (thick(myosin) and thin(actin) filaments)

The sarcomere - thick and thin filaments

- The sliding filament model - in each sarcomere, Z-discs are pulled towards the M line
- This leads to either shortening or generation of tension

Actin and Myosin:

- Arranged in a regular hexagonal structure
- 2 actin for every 1 myosin
- Each thick filaments can attach to 6 other thin filaments

