

Research Ethics

History of Human Research

- 1700- 1800s
 - o Louis Pasteur did human studies to find a rabies vaccine, some died of rabies/ smallpox, yet no one thought of consent
 - o Edward Jenner inoculated an 8-year-old with a milkmaid's cowpox lesion without consent
- Pre-World War II
 - o US soldiers were given 100 gold coins to sleep in mosquito infested tents and 100 more if they got yellow fever
- World War II
 - o Many medications/ chemicals/ poisons were tested in war and on captured soldiers
 - o Unit 731 – Japanese did brutal experiments on Chinese

1946 Nuremberg Code of Ethics

- Stipulated 10 requirements for ethical research
 - o Voluntary consent
 - o Experiment will yield fruitful results
 - o Previous research justifies its conduct
 - o No unnecessary physical/ mental suffering
 - o No reason to expect death
 - o Risk never exceeds humanitarian importance
 - o Prior arrangements to protect subjects
 - o Conducted only by scientifically qualified persons
 - o Subject can withdraw at any time
 - o Researcher can terminate study if too high of a risk

1964 Declaration of Helsinki

- Stipulated 18 basic principles (8 new ones) for ethical research, such as
 - o Well-being of subject takes precedence over science and society
 - o Duty of physician to protect life
 - o Subject must volunteer and be informed
 - o Assess risks vs benefits and give greater weight to lessen risks

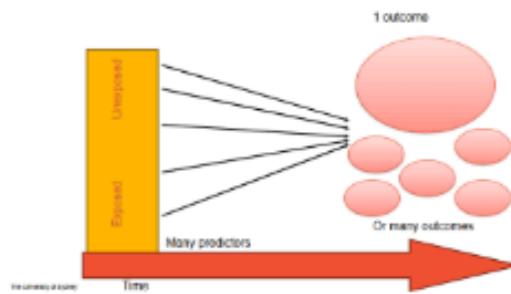
Bias

Risk of Bias

- Characteristics of a study that can introduce systematic errors in the magnitude or direction of the results

Types of Bias

- Selection Bias
 - o Systematic difference in baseline characteristics between two groups ... when selecting the groups for a study
 - o E.g. participants have different ages, health status ... 1 group is kids, 1 is adults
- Performance Bias
 - o Systematic difference in treatment (aside from the intervention)
 - o E.g. patients who know they are control group will go on other treatment
- Attrition Bias
 - o Systematic difference in loss to follow up/ study withdrawal between the two groups
 - Participants who are lost due to adverse treatment etc. must be accounted for and not just ignored
- Detection Bias
 - o Systematic difference in how outcomes are determined between two groups
 - o E.g. the researcher being aware of which group is intervention, and which is control ... he should be double blind
- Reporting Bias
 - o Systematic difference in reported and unreported outcomes
 - o E.g. only reporting positive results
- Funding Bias
 - o Systematic difference in the direction of results or effect sizes
 - o E.g. industry sponsored studies may report only for favourable results
- Biased Follow Up Time
 - o Prevalent user bias
 - Exposure starts before follow up
 - e.g. Including only current users of a treatment in a study can make the treatment look safer or more effective because early risks and those who discontinued are excluded.
 - o Immortal time bias
 - Follow up starts before exposure
 - E.g. Classifying patients as exposed only after they survive a certain period creates a span of "immortal" time that falsely inflates survival in the exposed group.


Randomised Controlled Trial

- Analytic, experimental
- Patients are screened to meet inclusion criteria and then invited to participate ... they are then randomly assigned to either the treatment group or the placebo group
- Advantages
 - o Controls for systematic, unsystematic and unknown bias
 - o Rigorous evaluation of a single variable in a precisely defined group of subjects
 - o Prospective design
 - o Evaluates a pre-defined hypothesis
 - o Can establish causality, treatment efficacy
- Disadvantages
 - o Limited applicability
 - o Limited generalisability
 - Lack of representation of population groups in the trial
 - o Expensive, time consuming
 - o Sometimes unethical
 - o The study population is not truly representative of a population
- Sources of Bias
 - o Selection of study population
 - o Randomisation
 - o Deviation from intervention
 - o Missing outcome data
 - o Measurement
 - o Selective reporting

Cohort Study

- Analytic, observational study of two or more groups (no randomisation) over time ... comparing exposed and unexposed groups and what proportion of people from each group got sick, stayed healthy
- May require "person years exposure" (be aware, common sense)
 - o 2 people taking med for 6 months is *same* as 3 people taking med for 4 months
- Determination of exposure of interest results from
 - o Preference
 - Smoking cigarettes
 - o Circumstance
 - Disease, living near a toxic waste site
- Followed up over time, a number of years
- Advantages
 - o Establishes a sequence of events, following people over time
 - o Exposure precedes outcome
 - o Reduces bias in measuring predictor variables
 - Recall or measurement bias
 - o Reduces survivor bias
 - Because it includes undiagnosed, misdiagnosed, dead
 - o Can study multiple outcomes
 - o Can study outcomes over time
 - o Measures incidence, relative risk
- Disadvantages
 - o Can't control for unknown confounding variables
 - o There may be systematic differences between groups
 - o Large sample size required especially for rare or long term outcomes
 - o Lengthy
 - o Expensive
 - o Not feasible for rare outcomes

Cohort study

