

Introduction to Cancer

Cancer

- Uncontrolled growth and spread of cells in the body
- A genetic disease, arising from genetic alterations that
 - o Promote self- sufficiency
 - o Allow escape from cell- cycle control
 - o Confer resistance to apoptosis
 - o Bestow immortality upon tumour cells
 - o Enhance immunological surveillance evasion
 - o Facilitate angiogenesis, invasion and metastasis
- Genetic aberrations involved are acquired somatic mutations/ chromosomal abnormalities
- Mutated “oncogenes” may lead to inappropriate, uncontrolled cell proliferation
- Mutated tumour suppressor genes may lead to the inability to stop cell proliferation
- Mutated cancer- susceptibility genes may predispose people to cancer

Epidemiology

- Second leading cause of death in Australia
- 1 in 2 people will get cancer in their lifetime
- The most common cancers are prostate, breast, colorectal, melanoma and lung

Tumours

- Benign
 - o Grows slowly and do not invade local tissues or spread to other organs
 - o Not “cancerous”
 - o E.g. warts, moles and fibroids
- Malignant
 - o Grows rapidly and does invade local tissues and/or spreads to other organs (metastasis)
 - o Is “cancerous”

Degrees of Spread

- Local Spread
 - o Into surrounding tissues
- Regional Spread
 - o To nearby lymph nodes, tissues and organs
- Metastatic Spread
 - o To other parts of the body via the blood stream and lymphatic system

- Anti- Androgen Drugs
 - o Used as first line hormonal therapy combined with orchectomy or GNRH agonist (preventing tumour flare), for castration resistant prostate cancer and metastatic or non-metastatic prostate cancer
 - o First Generation
 - Blocks androgen receptor signalling but some activation remains
 - Lower potency
 - Used for early-stage prostate cancer in combination with GNRH agonist
 - Higher risk of resistance
 - E.g. bicalutamide, flutamide, nilutamide, cyproterone
 - o Second Generation
 - Stronger androgen receptor inhibition
 - Higher potency
 - Used for metastatic and castration resistant prostate cancer
 - Lower risk of resistance
 - E.g. enzalutamide, apalutamide, darolutamide
 - o Steroidal Anti- Androgens
 - Blocks androgen receptors on prostate cancer cells and suppresses testosterone production via progestogenic activity
 - E.g. cyproterone (first generation)
 - o Nonsteroidal Anti- Androgens
 - Blocks androgen receptors on prostate cells
 - Side Effects
 - Erectile dysfunction, hot flushes, increased CVD risk
 - Less risk of osteoporosis than all other such drugs
 - E.g. bicalutamide (first generation), enzalutamide (second generation)
- Steroid Synthesis Inhibitors
 - o Used for high risk or resistant advanced prostate cancer and metastatic disease, used with prednisone ... key treatment for castration resistant prostate cancer by working at extra testicular sites
 - o Mechanism of Action
 - Inhibits CYP17 enzyme, which converts pregnenolone to DHEA and androstenedione (testosterone precursors) ... reducing androgen synthesis in the testicles, adrenal glands and the tumour itself
 - Lowers cortisol (hence the need for prednisone)
 - o Side Effects
 - Hypertension, hypokalaemia, fluid retention, erectile dysfunction, hot flushes, increased CVD risk, increased osteoporosis risk
 - o Considerations
 - Monitor blood pressure, electrolytes
 - Must be taken on an empty stomach
 - o E.g. abiraterone (oral tablet)

Diagnosis

- Self-Examination
- Mammography
 - o For lumps that are unable to be felt during physical examination
 - o Free mammograms every 2 years for women aged 50- 74
 - o Lower breast density as they age allows for easy detection
- Ultrasound
 - o High frequency sound waves that can distinguish benign cysts from tumours
- Biopsy
 - o Ultrasound- guided biopsy
 - o Then, using immunohistochemistry, we can determine the classification of cancer, by testing for expression of estrogen receptor, progesterone receptor and human epidermal growth factor receptor
 - Luminal A
 - Estrogen and progesterone receptor positive
 - HER2 receptor negative
 - PIK3CA, MAP kinase mutations
 - Most favourable prognosis, responsive to hormonal therapy
 - Luminal B
 - Estrogen and progesterone receptor positive
 - HER2 receptor positive
 - TP53 mutations
 - Poorer prognosis than luminal A, luminal B tends to be higher grade, responsive to hormonal therapy
 - HER2 Enriched
 - Estrogen and progesterone receptor negative
 - HER2 receptor positive
 - TP53 mutations
 - Poorer prognosis than luminal A and B, prognosis is improving with new therapies, responsive to HER2 targeted therapy
 - Basal Like/ Triple Negative
 - Estrogen, progesterone and HER2 receptor negative
 - TP53 mutations
 - Poorest prognosis and very aggressive cancer, not responsive to hormonal therapy
- MRI
 - o Can determine extent of spread
 - o Stage 0 – non-invasive, ductal carcinoma in situ (DCIS) OR lobular carcinoma in situ (LCIS)
 - o Stage I, II – early cancer with varying tumour sizes
 - o Stage IIB, III – locally advanced breast cancer that has spread to lymph nodes close to breast, skin of breast and/or chest wall
 - o Stage IV – metastatic breast cancer that has spread to distant organs like the brain, liver, lung and/or bone

- HER2
 - o HER2+ activation drives aggressive growth
 - o Monoclonal Antibodies
 - Trastuzumab
 - Binds to HER2 extracellular domain, inhibits the ligand- independent HER2 signalling
 - Pertuzumab
 - Binds to the dimerisation site on the HER2 domain, preventing ligand mediated pairing of HER2 with other HER receptors by steric hindrance
 - Complementary action with trastuzumab
 - o Antibody Drug Conjugates
 - Trastuzumab/ Emtansine
 - Combines HER2 blockade of trastuzumab with cytotoxic microtubule inhibition of emtansine
 - Enhanced efficacy and reduced toxicity
 - Used as second line therapy in HER2+ breast cancer and first line for metastatic HER2+ breast cancer in those unable to have taxane therapy
 - Trastuzumab/ Deruxtecan
 - Combines HER2 blockade of trastuzumab with humanised topoisomerase inhibition of Deruxtecan
 - Used for unresectable or metastatic HER2 breast cancer after 2 or more failed anti- HER2+ regimens
 - o Tyrosine Kinase Inhibitors
 - Lapatinib
 - Dual tyrosine kinase inhibitor of HER2, binds the intracellular binding domain of HER1 and HER2, causing cell signalling inhibition
 - Used for HER2+ metastatic breast cancer that has not responded to trastuzumab and chemotherapy
 - Neratinib
 - Reversible tyrosine kinase inhibitor of HER1, HER2 and HER4
- PARP
 - o Inhibitors of DNA repair
 - o Olaparib, talazoparib block PARP proteins, causing DNA damage and tumour cell death in BRCA mutated breast cancer i.e. triple negative and HER2(-)
- TROP2
 - o Sacituzumab Govitecan (antibody drug conjugate) targets TROP2 and delivers chemotherapy payload
 - o Used for metastatic triple negative breast cancer after failed previous treatment