

Foundations of Statistical Measurement

Important Terms in Research

- **Measurement** is the process of assigning numbers or categories to a specific characteristic based on explicit rules.
- The specific decisions made during measurement determine the type of data produced for analysis.
 - A single characteristic can result in different data types depending on the measurement rules chosen.
- A **variable** is any characteristic that takes on different values across individuals or observations.
 - Variables must vary within a dataset to be analysed statistically.
 - **Anxiety levels** can be recorded as numerical scores, while **handedness** is recorded as categories.
- A **population** consists of the entire group of individuals or events a study intends to describe.
 - Populations are usually conceptual because they are rarely feasible to measure in full.
- A **sample** is a smaller subset of individuals selected from the population for actual measurement.
 - Statistical analysis is performed on sample data rather than the entire population.
 - Conclusions about the broader population are drawn based on the results found in the sample.
- A **parameter** is a numerical value that describes a characteristic of a population.
 - Parameters are generally unknown because populations are not fully measured.
- A **statistic** is a numerical value that describes a characteristic of a sample.
 - Statistics are calculated directly from observed data to help organise and interpret it.
 - **Descriptive statistics** are used to summarise data, while **inferential statistics** use sample data to make claims about a population.

Variables and Data Types

- **Discrete variables** consist of a limited set of possible values and are often called categorical data.
 - Each observation in a discrete variable belongs to only one category.
 - Examples include handedness (left, right, ambidextrous) or grouped **anxiety categories** (low, average, high).
- **Continuous variables** consist of many possible numerical values along a scale and are called measurement data.
 - The differences between values in continuous variables represent meaningful quantitative differences.
 - Common examples include **height, weight, age**, and **questionnaire total scores**.
- **Numerical data** can be changed into discrete data through categorisation.

Practice Exam Questions

1. A variable must satisfy which condition to be analysed statistically?

- a. It must be measured using a ratio scale
- b. It must vary across individuals or observations
- c. It must be numerical rather than categorical
- d. It must be normally distributed

2. Which example represents a population rather than a sample?

- a. The 40 participants who completed a laboratory experiment
- b. All patients attending a clinic during one afternoon
- c. All adults living in Australia in 2025
- d. The first 100 survey responses collected online

3. A parameter differs from a statistic because a parameter

- a. is calculated directly from observed data
- b. summarises a sample characteristic
- c. is usually larger in value
- d. describes a population characteristic

4. Which statement correctly distinguishes descriptive from inferential statistics?

- a. Descriptive statistics test hypotheses, inferential statistics do not
- b. Inferential statistics summarise data, descriptive statistics do not
- c. Descriptive statistics summarise data, inferential statistics generalise to a population
- d. Both are used only when populations are fully measured

5. Handedness recorded as left, right, or ambidextrous is an example of

- a. continuous measurement data
- b. discrete categorical data
- c. ratio-level data
- d. interval-level data

6. A continuous variable is characterised by

- a. mutually exclusive categories
- b. an absence of numerical meaning
- c. ordered ranks without equal spacing
- d. many possible values along a numerical scale