
1.  orignore any dividends;

• can lead to underestimation

• distortionary effect on cross-section of stock returns

◦ e.g. ignoring dividends → growth stocks favoured more than income/value stocks

2. use adjusted (accounts for div) price series 

Simple returns

Given by relative price change:

rt ​ =
pt−1 ​

pt ​ − pt−1 ​

​   (1)

EXAMPLE: If  and , 

simple return is

pt−1 ​ = 100 pt ​ = 105

rt ​ =
100

105 − 100
​ = 0.05

Log returns

or “continuously compounded returns”

rt ​ = ln
pt−1 ​

pt ​

​   (3)

EXAMPLE: If  and , 

log return is

pt−1 ​ = 100 pt ​ = 105

rt ​ = ln
100
105

​ ≈ 0.049 = 4.9%

between simple and log returns Small difference when returns are small

 in empirical applications because:Log returns is preferred

1. naturally interpreted as “continuously compounding” returns

• compounding frequency does not matter → returns are more easily comparable across 

assets

2. convenient properties of logarithm → they are time-additive

• e.g. weekly log return can be given by sum of daily log returns

Disadvantages of log returns

Typically interested in return on a portfolio (i.e. combo of fin assets)

Simple return on portfolio = weighted avg of simple returns on indiv assets

does not hold for log returns

Log returns → estimate value of the portfolio at each time period, then determine returns for aggregate 

portfolio value

Using weighted average to calculate portfolio returns

Portfolio simple return



• Variance conditional on the predictor

var[rt ​∣xt−1 ​] = var[a + bxt−1 ​ + ϵt ​∣xt−1 ​] = var[ϵt ​∣xt−1 ​] = σ2

• Unconditional variance

var[rt ​] = var[a + bxt−1 ​ + ϵt ​] = b2var[xt−1 ​] + σ2

• Unconditional variance is bigger than conditional

Conditional heteroskedasticity

We have assumed that  is independent of . If this assumption does not hold,  is also given by 

a function of 

ϵt ​ xt−1 ​ var[ϵt ​∣xt−1 ​]
xt−1 ​

• Example: , where  is independent of  and ϵt ​ = xt−1 ​ut ​ ut ​ xt−1 ​ var(ut ​) = σu
2

​

•  and  are not independentxt−1 ϵt ​

• var[ϵt ​∣xt−1 ​] = var[xt−1 ​ut ​∣xt−1 ​] = xt−1
2

​var[ut ​∣xt−1 ​] = xt−1
2

​σu
2

​

3.3 Basic portfolio theory

Mean variance analysis of portfolio

A portfolio is a linear combination of individual assets. Portfolio weights add up to 1 (100%) and can be zero, 

positive, or possibly negative by short-selling.

• Short selling: You can borrow shares and selling them to make money first. You must buy back the same 

number of shares you initially borrowed and return them to the lender later.

• In this situation if asset price increases in future, return  on B is “gain”. But, return  on A is 

regarded as “loss” and it negatively affects the portfolio return.

(rB ​) (rA ​)

Mean and variance of a portfolio with 2 stocks: , but w1 ​,w2 ​ = 0 w3 ​,w4 ​, ..., = 0

• Notation:  and E(rj ​) = μj ​ var(rj ​) = σj
2

​

• Note also that cov(X,Y ) = SD(X)SD(Y )corr(X,Y )

Expected return of a portfolio

E(Rp ​) = E(w1 ​r1 ​ + w2 ​r2 ​) = w1 ​μ1 ​ + w2 ​μ2 ​     (17)

Variance of a portfolio

var(Rp ​) = var(w1 ​r1 ​ + w2 ​r2 ​)

= var(w1 ​r1 ​) + var(w2 ​r2 ​) + cov(w1r1 ​,w2 ​r1 ​)

= w1
2

​σ1
2

​ + w2
2

​σ2
2

​ + 2w1 ​w2 ​σ1 ​σ2 ​ρ12 ​

highest expected return and lowest varianceInvestors’ problem is choosing w1 ​ and w2 ​ with the 



Endogeneity means that cov(xt ​,ut ​) = E[xt ​ut ​] = 0

• problematic & results differ

9.4 Endogeneity

Consider the model: yt ​ = β1 ​ + β2 ​x2t ​ + ut ​

(i) may be violated in presence of stochastic regressors

at times  and this violates the exogeneity assumption, mainly due to the presence ofcov(x2t,ut ​) = 0

a. omitted variables

b. measurement errors

Sources of endogeneity

Omitted variables

Suppose the true relationship:

yt ​ = β1 ​ + β2 ​x2t ​ + β3 ​x3t ​ + ut ​,  cov(xjt ​,ut ​) = 0

• but the model is misspecified, yt ​ = β1 ​ + β2 ​x2t ​ + u~t ​

• where,  is a relevant variable but omittedx3t ​

Due to misspecification, u~t ​ = ut ​ + β3 ​x3t ​

Suppose that , then cov(x2t ​,x3t ​) = 0

cov(u~t ​,x2t ​) = cov(ut ​ + β3 ​x3t ​,x2t ​)

= cov(ut ​,x2t ​) + cov(β3 ​x3t ​,x2t ​)

= cov(ut ​,x2t ​) + β3 ​cov(x3t ​,x2t ​)

= 0 + β3 ​cov(x2t ​,x3t ​)

Measurement error

Suppose the true relationship:

yt ​ = β1 ​ + β2 ​x2t ​ + ut ​,  cov(x2t ​,ut ​) = 0

but there exists no perfect measure of x2t ​

• e.g. in empirical CAPM there is no perfect measure of market portfolio returns, so we may use a specific 

index fund with observable characteristics

use a proxy since there is no perfect measure

•  is not a perfect measure, and thusx~2t ​

x~2t ​ = x2t ​ + ηt ​

where,  is the measurement error. That is, we consider the following model:ηt ​

yt ​ = β1 ​ + β2 ​x~2t ​ + u~t ​



• Due to the presence of measurement error,

u~t ​ = ut ​ − β2 ​ηt ​

yt ​ = β1 ​ + β2 ​(x2t ​ + ηt ​) + ut ​

yt ​ = β1 ​ + β2 ​x2t ​ + β2 ​ηt ​ + ut ​

• Even if the measurement error is uncorrelated with  we haveut ​,

cov(u~t ​,x~2t ​) = cov(ut ​ − β2 ​ηt ​,x2t ​ + ηt ​) = −β2 ​var(ηt ​) = 0

Endogeneity bias

Suppose that

yt ​ = β1 ​ + β2 ​x2t ​ + ut ​,   cov(x2t ​,ut ​) = E[x2t ​ut ​] = ϱ = 0

OLS estimator β̂ ​2 ​ =
var^ (x2t ​)
cov^ (x2t ​,yt ​)

​

• Under mild cond. these sample versions of covariance and variance converge to true counterparts as 

sample size gets larger

◦ consistency of the sample covariance

By the law of large numbers (LLN), the following is true

cov^ (x2t ​, yt ​) →p ​ cov(x2t ​, yt ​)

var^ (x2t ​) →p ​ var(x2t ​)

where,  denotes →p ​ convergence in probability

Therefore,

β̂ ​2 ​ →p ​

var(xt ​)
cov(x2t ​,yt ​)

​

However, note that

cov(x2t ​, yt ​) = cov(x2t ​,β1 ​ + β2 ​x2t ​ + ut ​)

= cov(x2t ​,β2 ​x2t ​) + cov(x2t ​,ut ​)

= β2 ​var(x2t ​) + cov(x2t ​,ut ​)

 (due to endogeneity)cov(x2t ​,ut ​) = 0

Therefore,

var(xt ​)
cov(x2t ​,yt ​)

​ = β2 ​ +
var(x2t ​)
cov(x2t ​,ut ​)

​ = β2 ​

where, term in red is the endogeneity bias

What happened?

As the sample size gets larger,  gets closer to something that is not equal to β̂ ​2 ​ β2 ​

In this case, we say that β̂ ​2 ​ is inconsistent

Consequently,  is inconsistent as wellβ̂ ​1 ​

• since OLS estimator for  is a function of β1 ​ β2 ​



EXAMPLE: a simple form of the efficient market hypothesis 

E[Pt+1 ​∣ΩT ​] = Pt ​

the reasonable prediction of future asset price using all available info. up to time t, must be currnet 

price

Stochastic process (time series) Pt ​ satisfying above is a martingale (w. resp. to info. set Ωt ​)

EXAMPLE of martingale: Random walk

Xt+1 ​ = Xt ​ + ϵt+1 ​,

assume E[ϵt+1 ​∣Ωt ​] = 0

and Xt ​ ∈ Ωt ​

Then, E[Xt+1 ​∣Ωt ​] = E[Xt ​∣Ωt ​] + E[ϵt+1 ​∣Ωt ​] = Xt ​

11. Time series prediction and inference

11.1 Autoregressive predictive models

Often, time series prediction is implemented by autoregressive (AR) models

• AR predictive model assumes that  (i.e. lagged variables) future value can be predicted from past

Statistical properties of stationary AR models

Consider the model

xt ​ = ϕ0 ​ + ϕ1 ​xt−1 ​ + ... + ϕp ​xt−p ​ + ut ​

where,

E(ut ​) = 0

var(ut ​) = σ2

, cov(ut ​,xt−k ​) = 0 k ≥ 1

Mean of a stationary AR process

E(xt ​) = ϕ0 ​ + ϕ1 ​E(xt−1 ​) + ϕ2 ​E(xt−2 ​) + ... + ϕp ​E(xt−p ​) +

=0

E(ut ​) ​​

strict/weak stationarity implies:

E(xt ​) = E(xt−1 ​) = ... = E(xt−p ​) = μX ​

thus, μX ​ = ϕ0 ​ + ϕ1 ​μX ​ + ϕ2 ​μX ​ + ... + ϕp ​μX ​

μX ​ =
1 − ϕ1 ​ − ϕ2 ​ − ... − ϕp ​

ϕ0 ​

​



Variance of a stationary AR process

In the case of p = 1,

var(xt ​) = var(ϕ0 ​ + ϕ1 ​xt−1 ​ + ut ​)

= ϕ1
2

​var(xt−1 ​) + σ2

weak stationarity implies:

var(xt ​) = var(xt−1 ​) = σX
2

​

thus, σX
2

​ + ϕ1
2

​σX
2

​ + σ2

σX
2

​ =
1 − ϕ1

2
​

σ2
​

Variance of xt ​ is inflated by the persistence of (ϕ1 ​) of the AR model

when  and ϕ = 0.9

 means that xt ​ = 0.9xt−1 ​ + ut ​ σX
2

​ > σ2

when  andϕ = 0.1

 means that xt ​ = 0.1xt−1 ​ + ut ​ σX
2

​ ⪆ σ2

Autocovariances of a stationary AR(p) process

The autocovariances and autocorrelation functions can be computed by solving the Yule-Walker equations:

The  are given byYule-Walker equations

γ0 ​ = ϕ1 ​γ1 ​ + ϕ2 ​γ2 ​ + σ2

γ1 ​ = ϕ1 ​γ0 ​ + ϕ2 ​γ1 ​

γ2 ​ = ϕ1 ​γ1 ​ + ϕ2 ​γ0 ​

.

.

.

γk ​ = ϕ1 ​γk−1 + ϕ2 ​γk ​

Autocovariances  can be computedγ1 ​, ..., γk ​


