

1. *ignore any dividends*; or
 - can lead to underestimation
 - distortionary effect on cross-section of stock returns
 - e.g. ignoring dividends → growth stocks favoured more than income/value stocks
2. use adjusted (accounts for div) price series

Simple returns

Given by relative price change:

$$r_t = \frac{p_t - p_{t-1}}{p_{t-1}} \quad (1)$$

EXAMPLE: If $p_{t-1} = 100$ and $p_t = 105$, simple return is

$$r_t = \frac{105 - 100}{100} = 0.05$$

Log returns

or "continuously compounded returns"

$$r_t = \ln \frac{p_t}{p_{t-1}} \quad (3)$$

EXAMPLE: If $p_{t-1} = 100$ and $p_t = 105$, log return is

$$r_t = \ln \frac{105}{100} \approx 0.049 = 4.9\%$$

Small difference between simple and log returns when returns are small

Log returns is preferred in empirical applications because:

1. naturally interpreted as "**continuously compounding**" returns
 - compounding frequency does not matter → returns are more easily comparable across assets
2. convenient properties of logarithm → they are **time-additive**
 - e.g. weekly log return can be given by sum of daily log returns

Disadvantages of log returns

Typically interested in return on a portfolio (i.e. combo of fin assets)

Simple return on portfolio = weighted avg of simple returns on indiv assets

does not hold for log returns

Log returns → estimate **value of the portfolio at each time period**, then determine returns for aggregate portfolio value

Using weighted average to calculate portfolio returns

Portfolio simple return

- Variance conditional on the predictor

$$\text{var}[r_t|x_{t-1}] = \text{var}[a + bx_{t-1} + \epsilon_t|x_{t-1}] = \text{var}[\epsilon_t|x_{t-1}] = \sigma^2$$

- Unconditional variance

$$\text{var}[r_t] = \text{var}[a + bx_{t-1} + \epsilon_t] = b^2 \text{var}[x_{t-1}] + \sigma^2$$

- *Unconditional variance is bigger than conditional*

Conditional heteroskedasticity

We have assumed that ϵ_t is independent of x_{t-1} . If this assumption does not hold, $\text{var}[\epsilon_t|x_{t-1}]$ is also given by a function of x_{t-1}

- Example: $\epsilon_t = x_{t-1}u_t$, where u_t is independent of x_{t-1} and $\text{var}(u_t) = \sigma_u^2$
- x_{t-1} and ϵ_t are not independent
- $\text{var}[\epsilon_t|x_{t-1}] = \text{var}[x_{t-1}u_t|x_{t-1}] = x_{t-1}^2 \text{var}[u_t|x_{t-1}] = x_{t-1}^2 \sigma_u^2$

3.3 Basic portfolio theory

Mean variance analysis of portfolio

A portfolio is a linear combination of individual assets. Portfolio weights add up to 1 (100%) and can be zero, positive, or possibly negative by short-selling.

- *Short selling: You can borrow shares and selling them to make money first. You must buy back the same number of shares you initially borrowed and return them to the lender later.*
- In this situation if asset price increases in future, return (r_B) on B is "gain". But, return (r_A) on A is regarded as "loss" and it negatively affects the portfolio return.

Mean and variance of a portfolio with 2 stocks: $w_1, w_2 \neq 0$, but $w_3, w_4, \dots, = 0$

- Notation: $E(r_j) = \mu_j$ and $\text{var}(r_j) = \sigma_j^2$
- Note also that $\text{cov}(X, Y) = SD(X)SD(Y)\text{corr}(X, Y)$

Expected return of a portfolio

$$E(R_p) = E(w_1r_1 + w_2r_2) = w_1\mu_1 + w_2\mu_2 \quad (17)$$

Variance of a portfolio

$$\begin{aligned} \text{var}(R_p) &= \text{var}(w_1r_1 + w_2r_2) \\ &= \text{var}(w_1r_1) + \text{var}(w_2r_2) + \text{cov}(w_1r_1, w_2r_2) \\ &= w_1^2\sigma_1^2 + w_2^2\sigma_2^2 + 2w_1w_2\sigma_1\sigma_2\rho_{12} \end{aligned}$$

Investors' problem is choosing w_1 and w_2 with the highest expected return and lowest variance

Endogeneity means that $\text{cov}(x_t, u_t) = E[x_t u_t] \neq 0$

- problematic & results differ

9.4 Endogeneity

Consider the model: $y_t = \beta_1 + \beta_2 x_{2t} + u_t$

(i) may be violated in presence of stochastic regressors

at times $\text{cov}(x_{2t}, u_t) \neq 0$ and this violates the exogeneity assumption, mainly due to the presence of

- omitted variables
- measurement errors

Sources of endogeneity

Omitted variables

Suppose the true relationship:

$$y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + u_t, \text{cov}(x_{3t}, u_t) = 0$$

- but the model is misspecified, $y_t = \beta_1 + \beta_2 x_{2t} + \tilde{u}_t$
- where, x_{3t} is a relevant variable but omitted

Due to misspecification, $\tilde{u}_t = u_t + \beta_3 x_{3t}$

Suppose that $\text{cov}(x_{2t}, x_{3t}) \neq 0$, then

$$\begin{aligned} \text{cov}(\tilde{u}_t, x_{2t}) &= \text{cov}(u_t + \beta_3 x_{3t}, x_{2t}) \\ &= \text{cov}(u_t, x_{2t}) + \text{cov}(\beta_3 x_{3t}, x_{2t}) \\ &= \text{cov}(u_t, x_{2t}) + \beta_3 \text{cov}(x_{3t}, x_{2t}) \\ &= 0 + \beta_3 \text{cov}(x_{2t}, x_{3t}) \end{aligned}$$

Measurement error

Suppose the true relationship:

$$y_t = \beta_1 + \beta_2 x_{2t} + u_t, \text{cov}(x_{2t}, u_t) = 0$$

but there exists no perfect measure of x_{2t}

- e.g. in empirical CAPM there is no perfect measure of market portfolio returns, so we may use a specific index fund with observable characteristics

use a proxy since there is no perfect measure

- \tilde{x}_{2t} is not a perfect measure, and thus

$$\tilde{x}_{2t} = x_{2t} + \eta_t$$

where, η_t is the measurement error. That is, we consider the following model:

$$y_t = \beta_1 + \beta_2 \tilde{x}_{2t} + \tilde{u}_t$$

- Due to the presence of measurement error,

$$\tilde{u}_t = u_t - \beta_2 \eta_t$$

$$y_t = \beta_1 + \beta_2(x_{2t} + \eta_t) + u_t$$

$$y_t = \beta_1 + \beta_2 x_{2t} + \beta_2 \eta_t + u_t$$

- Even if the measurement error is uncorrelated with u_t , we have

$$\text{cov}(\tilde{u}_t, \tilde{x}_{2t}) = \text{cov}(u_t - \beta_2 \eta_t, x_{2t} + \eta_t) = -\beta_2 \text{var}(\eta_t) \neq 0$$

Endogeneity bias

Suppose that

$$y_t = \beta_1 + \beta_2 x_{2t} + u_t, \quad \text{cov}(x_{2t}, u_t) = E[x_{2t}u_t] = \varrho \neq 0$$

$$\text{OLS estimator } \hat{\beta}_2 = \frac{\hat{\text{cov}}(x_{2t}, y_t)}{\hat{\text{var}}(x_{2t})}$$

- Under mild cond. these sample versions of covariance and variance converge to true counterparts as sample size gets larger

- *consistency of the sample covariance*

By the law of large numbers (LLN), the following is true

$$\hat{\text{cov}}(x_{2t}, y_t) \rightarrow_p \text{cov}(x_{2t}, y_t)$$

$$\hat{\text{var}}(x_{2t}) \rightarrow_p \text{var}(x_{2t})$$

where, \rightarrow_p denotes *convergence in probability*

Therefore,

$$\hat{\beta}_2 \rightarrow_p \frac{\text{cov}(x_{2t}, y_t)}{\text{var}(x_{2t})}$$

However, note that

$$\text{cov}(x_{2t}, y_t) = \text{cov}(x_{2t}, \beta_1 + \beta_2 x_{2t} + u_t)$$

$$= \text{cov}(x_{2t}, \beta_2 x_{2t}) + \text{cov}(x_{2t}, u_t)$$

$$= \beta_2 \text{var}(x_{2t}) + \text{cov}(x_{2t}, u_t)$$

$$\text{cov}(x_{2t}, u_t) \neq 0 \text{ (due to endogeneity)}$$

Therefore,

$$\frac{\text{cov}(x_{2t}, y_t)}{\text{var}(x_{2t})} = \beta_2 + \frac{\text{cov}(x_{2t}, u_t)}{\text{var}(x_{2t})} \neq \beta_2$$

where, term in red is the *endogeneity bias*

What happened?

As the sample size gets larger, $\hat{\beta}_2$ gets closer to something that is not equal to β_2

In this case, we say that $\hat{\beta}_2$ is **inconsistent**

Consequently, $\hat{\beta}_1$ is inconsistent as well

- since OLS estimator for β_1 is a function of β_2

EXAMPLE: a simple form of the efficient market hypothesis

$$E[P_{t+1} | \Omega_T] = P_t$$

the reasonable prediction of future asset price using all available info. up to time t , must be current price

Stochastic process (time series) P_t satisfying above is a **martingale** (w. resp. to info. set Ω_t)

EXAMPLE of martingale: Random walk

$$X_{t+1} = X_t + \epsilon_{t+1},$$

$$\text{assume } E[\epsilon_{t+1} | \Omega_t] = 0$$

$$\text{and } X_t \in \Omega_t$$

$$\text{Then, } E[X_{t+1} | \Omega_t] = E[X_t | \Omega_t] + E[\epsilon_{t+1} | \Omega_t] = X_t$$

11. Time series prediction and inference

11.1 Autoregressive predictive models

Often, time series prediction is implemented by autoregressive (AR) models

- AR predictive model assumes that **future value can be predicted from past** (i.e. lagged variables)

Statistical properties of stationary AR models

Consider the model

$$x_t = \phi_0 + \phi_1 x_{t-1} + \dots + \phi_p x_{t-p} + u_t$$

where,

$$E(u_t) = 0$$

$$\text{var}(u_t) = \sigma^2$$

$$\text{cov}(u_t, x_{t-k}) = 0, k \geq 1$$

Mean of a stationary AR process

$$E(x_t) = \phi_0 + \phi_1 E(x_{t-1}) + \phi_2 E(x_{t-2}) + \dots + \phi_p E(x_{t-p}) + \underbrace{E(u_t)}_{=0}$$

strict/weak stationarity implies:

$$E(x_t) = E(x_{t-1}) = \dots = E(x_{t-p}) = \mu_X$$

$$\text{thus, } \mu_X = \phi_0 + \phi_1 \mu_X + \phi_2 \mu_X + \dots + \phi_p \mu_X$$

$$\mu_X = \frac{\phi_0}{1 - \phi_1 - \phi_2 - \dots - \phi_p}$$

Variance of a stationary AR process

In the case of $p = 1$,

$$\begin{aligned} \text{var}(x_t) &= \text{var}(\phi_0 + \phi_1 x_{t-1} + u_t) \\ &= \phi_1^2 \text{var}(x_{t-1}) + \sigma^2 \end{aligned}$$

weak stationarity implies:

$$\text{var}(x_t) = \text{var}(x_{t-1}) = \sigma_X^2$$

thus, $\sigma_X^2 + \phi_1^2 \sigma_X^2 + \sigma^2$

$$\sigma_X^2 = \frac{\sigma^2}{1 - \phi_1^2}$$

Variance of x_t is inflated by the persistence of (ϕ_1) of the AR model

when $\phi = 0.9$ and

$$x_t = 0.9x_{t-1} + u_t \text{ means that } \sigma_X^2 > \sigma^2$$

when $\phi = 0.1$ and

$$x_t = 0.1x_{t-1} + u_t \text{ means that } \sigma_X^2 \gtrapprox \sigma^2$$

Autocovariances of a stationary AR(p) process

The autocovariances and autocorrelation functions can be computed by solving the Yule-Walker equations:

The **Yule-Walker equations** are given by

$$\gamma_0 = \phi_1 \gamma_1 + \phi_2 \gamma_2 + \sigma^2$$

$$\gamma_1 = \phi_1 \gamma_0 + \phi_2 \gamma_1$$

$$\gamma_2 = \phi_1 \gamma_1 + \phi_2 \gamma_0$$

.

.

.

$$\gamma_k = \phi_1 \gamma_{k-1} + \phi_2 \gamma_k$$

Autocovariances $\gamma_1, \dots, \gamma_k$ can be computed