1. ignore any dividends; or
e can lead to underestimation
e distortionary effect on cross-section of stock returns
o e.g.ignoring dividends — growth stocks favoured more than income/value stocks

2. use adjusted (accounts for div) price series

Simple returns Log returns
Given by relative price change: or "continuously compounded returns”
— Pt
= Dt Pt—1 (1) ry = ln _ (3)
Pt Dbi1
® EXAMPLE: If p,_1 = 100 and p; = 105, ® EXAMPLE: If pr_1 = 100 and p; = 105,
simple return is log return is
105 — 100 105
T4 100 0.05 e = 1In 100 0

Small difference between simple and log returns when returns are small

Log returns is preferredin empirical applications because:
1. naturally interpreted as “continuously compounding” returns

e compounding frequency does not matter — returns are more easily comparable across
assets

2. convenient properties of logarithm — they are time-additive

e e.g. weekly log return can be given by sum of daily log returns

Disadvantages of log returns

Typically interested in return on a portfolio (i.e. combo of fin assets)
Simple return on portfolio = weighted avg of simple returns on indiv assets
does not hold for log returns

Log returns — estimate value of the portfolio at each time period, then determine returns for aggregate
portfolio value

Using weighted average to calculate portfolio returns

Portfolio simple return



e \Variance conditional on the predictor
var(ry|z,_1] = varfa + bry_; + €lz,1] = var[e]z, 1] = o
e Unconditional variance
var[ry] = varfa + bz; | + €] = b*var[z; ] + o

® Unconditional variance is bigger than conditional

Conditional heteroskedasticity

We have assumed that €; is independent of ;1. If this assumption does not hold, var [6t|:ct,1] is also given by
a function of ;1

* Example: €, = 41Uy, where uy is independent of ;1 and var(u:) = 03
e ;1 and € are not independent

o varle|ri_1] = var[zi_1ut|xi1] = azf,lvar[ut]mtfl] = wf,laﬁ

3.3 Basic portfolio theory

Mean variance analysis of portfolio

A portfolio is a linear combination of individual assets. Portfolio weights add up to 1 (100%) and can be zero,
positive, or possibly negative by short-selling.

e Short selling: You can borrow shares and selling them to make money first. You must buy back the same
number of shares you initially borrowed and return them to the lender later.

* In this situation if asset price increases in future, return (75) on B is “gain”. But, return (74) on Ais
regarded as “loss” and it negatively affects the portfolio return.

Mean and variance of a portfolio with 2 stocks: w1, we # 0, but ws, w4, ..., = 0
- _ _ 2
* Notation: E(r;) = pj and var(r;) = o;

e Notealso that cov(X,Y) = SD(X)SD(Y )corr(X,Y)

Expected return of a portfolio
E(Ry) = E(wiry + wary) = w1y +waps  (17)

Variance of a portfolio
var(Rp) = var(wir, + wars)
= var(wiri) + var(warz) + cov(wir, wari)

= wio? + wios + 2wiwro102p12

Investors’ problem is choosing w1 and ws with the highest expected return and lowest variance



Endogeneity means that cov(zy, u;) = E[zyuy] # 0

e problematic & results differ

9.4 Endogeneity

Consider the model: y; = B1 + B2 + ur

(i) may be violated in presence of stochastic regressors

at times cov(mgt, ut) = 0 and this violates the exogeneity assumption, mainly due to the presence of
a. omitted variables

b. measurement errors

Sources of endogeneity

Omitted variables
Suppose the true relationship:
Yyt = B1 + Baxar + B3xar + ur, cov(xje, ur) =0
* but the model is misspecified, y: = B1 + Baxar + Ut

e where, x3; is a relevant variable but omitted

Due to misspecification, iy = us + B3T3t
Suppose that cov(zat, z3¢) # 0, then

cov (T, z2t) = cov(ut + P3xat, T2t)

= cov(ut, z2t) + cov(Bsxse, Tat)

= cov(ut, T2t) + Pzcov(xst, T2t)

= 0+ Bacov(zat, T3t)

Measurement error
Suppose the true relationship:

Yt = B1 + Baxar + us, cov(wa, ur) =0
but there exists no perfect measure of ot

® e.g.in empirical CAPM there is no perfect measure of market portfolio returns, so we may use a specific
index fund with observable characteristics

use a proxy since there is no perfect measure

® I9: is not a perfect measure, and thus
Tot = Tot + M
where, 7); is the measurement error. That is, we consider the following model:

Yy = B1 + BaZor + Uy



e Due to the presence of measurement error,
Uy = uy — Bamy

Y = P+ Bo(@ar + M) + w
Y = P+ Baar + Bamy + uy

e Even if the measurement error is uncorrelated with u;, we have

COU(Ut, iL’2t) = CO'U( — Bany, Top + 77t) = —/32’1)@7'(7%) #0

Endogeneity bias

Suppose that

Yyt = Pr1+ Paxar + uz, cov(xa,ut) = Elzarus] = 0 # 0
OLS estimator Bz — covlzay)

var(zat)
¢ Under mild cond. these sample versions of covariance and variance converge to true counterparts as
sample size gets larger

o consistency of the sample covariance
By the law of large numbers (LLN), the following is true
cov(zat, yt) —p cov(zat, Yt)
var(zat) —p var(zat)
where, —;, denotes convergence in probability
Therefore,

cov(za,y1)

ﬁ2 —p var(z;)

However, note that
cov(zat, yt) = cov(zat, B1 + Bowar + ur)
= cov(wxat, Baxat) + cov(wat, ut)
= Bovar(zat) + cov(wat, ut)

cov(xat, ut) # 0 (due to endogeneity)

Therefore,
Ccov m?tayt /8 _|_ Cov ZL'Qt,Ut # /B
war(z) var(za) 2

where, term in red is the endogeneity bias

What happened?

As the sample size gets larger, 55 gets closer to something that is not equal to B2
In this case, we say that (35 is inconsistent

Consequently, 3 is inconsistent as well

® since OLS estimator for 1 is a function of 32



0 EXAMPLE: a simple form of the efficient market hypothesis
E[P;1|Qr] = P,

the reasonable prediction of future asset price using all available info. up to timet, must be currnet
price

Stochastic process (time series) P, satisfying above is a martingale (w. resp. to info. set Qt)

EXAMPLE of martingale: Random walk
Xip1 = Xy + €41,
assume Ele; 1|Q] =0
and X; €
Then, B[ X;1|] = B[X;|Q] + Eler1|] = X,

11. Time series prediction and inference
11.1 Autoregressive predictive models
Often, time series prediction is implemented by autoregressive (AR) models

e AR predictive model assumes that future value can be predicted from past (i.e. lagged variables)

Statistical properties of stationary AR models

Consider the model
Ty =g+ G1Tp 1+ oo+ Py p + Uy
where,
E(u;) =0
var(uy) = o2

cov(ug, zy ) =0,k >1

Mean of a stationary AR process

E(zi) = ¢o + $1E(xe-1) + $2E(m-2) + ... + $pE (w1 ) + Eluy)
=0
strict/weak stationarity implies:

E(wt) == E(wtfl) = ... = E(xtfp) — /’l’X
thus, ux = @o + P1ux + Papix + ... + Pppx

~ b0
T—¢1— 62— — &,

Kx



Variance of a stationary AR process
Inthe case of p = 1,
var(z;) = var(¢o + d12-1 + uy)
= ¢3var(z;_1) + o2
weak stationarity implies:
var(z;) = var(z;_ 1) = 0%

2 2 2 2
thus, oy + ¢j0% +0

0_2

2
ox = —
1— ¢
W Variance of x; is inflated by the persistence of (¢1) of the AR model
when ¢ = 0.9 and
x; = 0.92;_; + u; means that a§( > o2

when ¢ = 0.1 and
> 52

~
~

z; = 0.12;_1 + u; means that a§(

Autocovariances of a stationary AR(p) process

The autocovariances and autocorrelation functions can be computed by solving the Yule-Walker equations:

The Yule-Walker equations are given by
Yo = 11 + P2y + 07
Y1 = $17% + P2
Yo = $1m + P2%0

e = P1Vi-1 + P2V

Autocovariances 71, ..., Y can be computed



