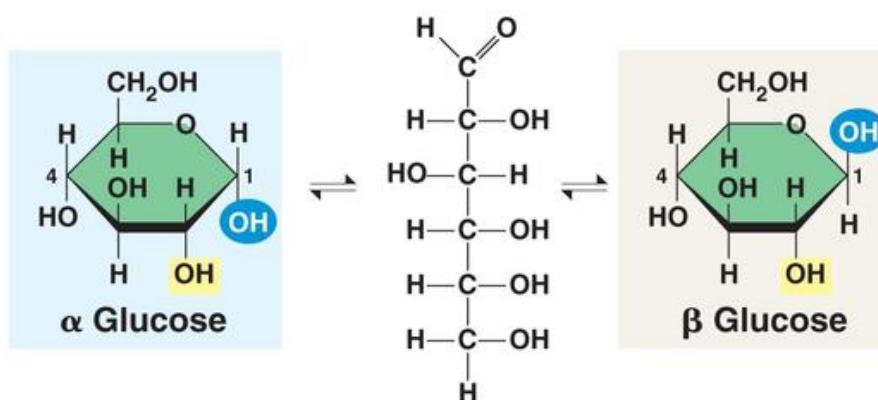

BIOL10008: ELITE [H1] STUDY RESOURCE

2023	Semester 1	BIOL10008	Introductory Biology: Life's Machinery	1	95	H1	First Class Honours	12.500

[Email my Statement of Results](#)

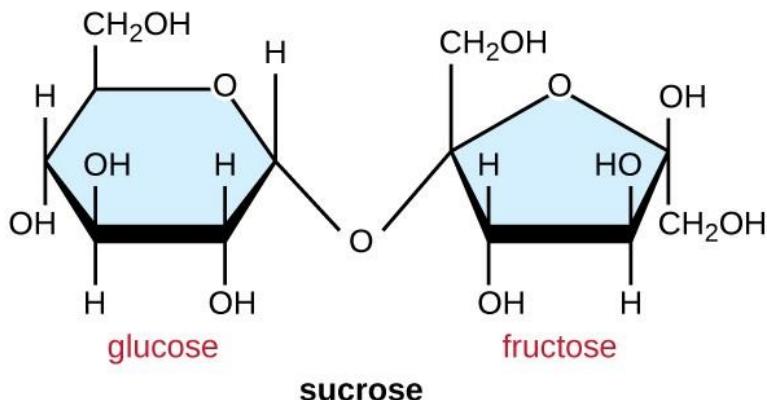
[Cancel](#)


Topic 2

Biological Macromolecules

- **Carbohydrates, proteins, lipids and nucleic acids** are the main classes of macromolecules. They are polymers (long chains consisting of repeating 'monomer' units)
- Macromolecules are usually produced by the body through **condensation reactions** where a covalent bond forms and a H_2O molecule is released
 - These reactions are also known as **dehydration reactions**

Carbohydrates


- Carbohydrates follow a general empirical formula of $(\text{CH}_2\text{O})_n$ for most simple sugars
- The presence of multiple **hydroxyl (-OH)** groups makes carbohydrates polar and generally soluble in water when the molecules are small
- Classification of carbohydrates depends on the total number of saccharide units within the molecule
- **Monosaccharides**
 - Monosaccharides are single sugar units and represent the basic monomers for all carbohydrate polymers
 - **Glucose** is a critical monosaccharide that acts as the primary fuel for cellular respiration and a building block for larger carbs
 - In aqueous environments, most monosaccharides exist in ring forms
 - The ring can take an α or β configuration
 - This specific orientation dictates how polymers eventually form and how they behave

• Disaccharides

- Disaccharides consist of two monosaccharides joined by a covalent linkage
- A **glycosidic bond** forms during a condensation reaction, creating an ether-like ($\text{C}-\text{O}-\text{C}$) bridge between sugars

- The specific properties of a disaccharide depend on which monomers are linked and whether the bond is an α or β linkage

• Polysaccharides

- Polysaccharides are long carbohydrate polymers linked by glycosidic bonds
- Function is determined by monomer type, linkage type (α vs β), the length of the chain, and whether the chain is linear or branched
- Polysaccharides are categorised by their use for either energy storage or structural support
 - Storage molecules use compact, digestible linkages
 - Structural molecules utilize strong, resistant linkages

• Starch

- Starch is the primary energy-storage polysaccharide in plants and is composed entirely of glucose
- The molecule is built using **α -glycosidic linkages**, resulting in shapes that are easily recognized by digestive enzymes
- Enzymes like amylase efficiently hydrolyze these α -linkages to release glucose for respiration
- Starch can be branched, which increases the number of available chain ends for enzymatic breakdown
 - Increased branching allows for faster glucose release
- In food contexts, starch acts as a thickener or emulsifier because it swells and changes the viscosity of mixtures

• Cellulose

- Cellulose is the most abundant polymer on Earth and serves as a primary structural component in plants
- Unlike starch, cellulose is composed of **β -glucose** monomers held together by **β -1,4 glycosidic linkages**
- The β -1,4 linkages force the molecule into straight, linear chains rather than coils