# Module 1

## How do we measure neural activity?

- Direct vs indirect methods
  - o Brain activity can be measured using direct or indirect methods
  - Direct methods directly measure electrical activity generated by neurons in real time (with ms precision)
    - Direct measures include
      - Action potentials
      - Electrical changes, and
      - Extracranial voltage
  - Indirect measures track changes that happen because active neurons require oxygen and energy. By tracking their use in different parts of the brain, we obtain an <u>indirect</u> measurement of brain activity
    - Indirect measures include tracking
      - Blood flow
      - ATP
      - Blood oxygenation

#### fMRI

- fMRI provides structural and functional data by measuring localized haemodynamic changes
  - It is non-invasive, unlike PET scans, and allows for humancentric studies
  - It offers high spatial resolution compared to EEG
- How does fMRI work?
  - o How MRI process work?
    - The setup requires a high-strength magnet (usually 1.5-3 Tesla), a radiofrequency coil, and a head coil
      - Images are produced by mapping white and grey matter based on water content
      - The physics relies on hydrogen ions, which have a single proton spinning on a random axis
        - When placed in a magnetic field, these protons align either parallel or anti-parallel
        - A radiofrequency pulse shifts this axis of orientation; when the pulse is turned off, the protons return to their original orientation and release energy
    - Areas with higher energy signify more H ions and more water, which indicates increased blood flow
      - Tissues need more oxygen to power the Na+/K+ pump to maintain ion concentrations in the ICF and ECF



#### The BOLD Response

- Magnetic properties of blood + MRI signal
  - fMRI relies on the fact that oxygenated and deoxygenated blood have <u>different magnetic properties</u>
    - **Oxygenated blood** is weakly diamagnetic, and therefore, causes *minimal distortion* of the local magnetic field
    - Deoxygenated blood is <u>paramagnetic</u>, and therefore, it <u>distorts the surrounding field</u>
      - These distortions change the MRI signal (especially the T2-weighted signal), causing *faster signal decay*
- Inferring neural activity from haemodynamic changes
  - Active neurons use more energy, since ATP must be 'spent' to restore the electrochemical gradient after action potentials are fired
  - Because energy use increases, the heart must send more oxygenated blood to active parts of the brain
    - Thus, *cerebral blood flow* increases
  - o However, there is an *oversupply* of oxygenated blood; the active neurons are supplied with more blood than they actually require
    - More oxygenated blood = less signal distortion of the magnetic field → this results in a stronger BOLD signal

# The BOLD signal

- This BOLD signal reflects changes in the balance of oxygenated (weakly diamagnetic) and deoxygenated (paramagnetic) haemoglobin
- o fMRI is particularly sensitive to changes in <u>deoxyhaemoglobin</u> because it disrupts the magnetic signal more strongly
  - In fMRI, <u>activation</u> refers to a <u>significant increase in the BOLD</u> <u>signal</u>, and indicates <u>increased neural activity</u>

### Spatial smoothing

- Spatial smoothing = where signals from neighbouring voxels are <u>averaged out</u>, in order to improve the <u>signal/noise ratio</u>
- This helps to reveal <u>consistent activation patterns</u>, especially when comparing brain activity across different subjects

### What are the limitations of fMRI?

- fMRI is <u>not a direct measure of neural activity</u>
  - Changes in blood flow can be <u>mislocalised</u> For example, signals may appear <u>downstream</u> from the actual site of activity due to blood flow through vessels
  - Vascular responses reflect multiple changes (eg blood velocity, volume fraction or red blood cells) which all influence the BOLD signal
  - This makes interpretation <u>imperfect</u>