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Section 5

Fourier Series

Subsection 5.1

The Heat Equation (Ring)

By way of motivation, suppose we want to solve the following PDE-IBVP modelling heat distribution on a
metal ring of circumference 2π:

ut = α uxx, −π ≤ x ≤ π, t > 0, α > 0,

subject to the periodic boundary conditions

u(−π, t) = u(π, t), ux(−π, t) = ux(π, t),

and the initial condition
u(x, 0) = f(x).

For simplicity we set α = 1. Assume a separated form u(x, t) = X(x)T (t). Then

X(x)T ′(t) = X ′′(x)T (t) =⇒ T ′(t)
T (t)

= X ′′(x)
X(x)

=: −λ,

where λ ∈ R is a constant. Hence

T ′(t) = −λT (t), X ′′(x) + λX(x) = 0.

The time part solves T (t) = C e−λt. The space part is an eigenvalue problem with periodic boundary
conditions

X ′′(x) + λX(x) = 0, X(−π) = X(π), X ′(−π) = X ′(π).

We consider three cases for λ.
(i) λ < 0. Writing λ = −µ2 with µ > 0, the general solution X(x) = C1eµx + C2e−µx cannot satisfy

both periodic conditions unless C1 = C2 = 0. Thus there is no nontrivial periodic eigenfunction.
(ii) λ = 0. Then X(x) = A1x + A0. Periodicity forces A1 = 0, so X ≡ A0 is an eigenfunction.
(iii) λ > 0. Write λ = k2 with k > 0. Then

X(x) = A cos(kx) + B sin(kx).

Thus, under these boundary conditions the heat equation admits two families of solutions:

uk(x, t) = e−k2t cos(kx), vk(x, t) = e−k2t sin(kx), k = 0, 1, 2, . . .

By the superposition principle and Ignoring convergence issues for the moment, any function of the form

u(x, t) = a0

2
+

∞∑
k=1

(
akuk(x, t) + bkvk(x, t)

)
Which is

u(x, t) = a0

2
+

∞∑
k=1

(
ake−k2t cos(kx) + bke−k2t sin(kx)

)
,

At t = 0 we require

u(x, 0) = f(x) =⇒ f(x) = a0

2
+

∞∑
k=1

(
ak cos(kx) + bk sin(kx)

)
.



Fourier Series Fourier Series 28

The question is: what kind of functions f(x) can be expressed as a (potentially infinite) linear combina-
tion of sines and cosines? The answer is: essentially all functions (at least in a suitable sense).

Subsection 5.2

Fourier Series

Definition 1 Let f(x) be a 2π-periodic function which is piecewise continuous on [−π, π]. Then f can be expanded (at
least formally) into a Fourier series of the form

f(x) ∼ a0

2
+

∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
,

where the Fourier coefficients are given by

a0 = 1
π

ˆ π

−π

f(x) dx, an = 1
π

ˆ π

−π

f(x) cos(nx) dx, bn = 1
π

ˆ π

−π

f(x) sin(nx) dx, n ≥ 1.

Lemma 1 If k, ℓ > 0, then ˆ π

−π

cos(kx) cos(ℓx) dx =

{
0, k 6= ℓ,

π, k = ℓ,

ˆ π

−π

sin(kx) sin(ℓx) dx =

{
0, k 6= ℓ,

π, k = ℓ,
ˆ π

−π

sin(kx) cos(ℓx) dx = 0, ∀k, ℓ.

Example Find the Fourier series of the function

f(x) = x2 − π2, x ∈ [−π, π].

Proof By linearity, it suffices to compute the Fourier series of x2 on [−π, π] and then subtract π2.
For x2, the Fourier coefficients are

a0 = 1
π

ˆ π

−π

x2 dx = 2
π

ˆ π

0
x2 dx = 2π2

3
,

ak = 1
π

ˆ π

−π

x2 cos(kx) dx = 2
π

ˆ π

0
x2 cos(kx) dx = 4(−1)k

k2 (k ≥ 1),

and, since x2 is even,

bk = 1
π

ˆ π

−π

x2 sin(kx) dx = 0 (k ≥ 1).

Hence

x2 ∼ a0

2
+

∞∑
k=1

ak cos(kx) = π2

3
+ 4

∞∑
k=1

(−1)k

k2 cos(kx).

Therefore,

f(x) = x2 − π2 ∼
(

π2

3
− π2

)
+ 4

∞∑
k=1

(−1)k

k2 cos(kx) = −2π2

3
+ 4

∞∑
k=1

(−1)k

k2 cos(kx).
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Example Compute the Fourier series of the function f(x) = x on the interval [−π, π].

Proof We compute the Fourier coefficients. First,

a0 = 1
π

ˆ π

−π

x dx = 0.

Next, since x cos(kx) is an odd function on [−π, π], we have

ak = 1
π

ˆ π

−π

x cos(kx) dx = 0.

Finally,

bk = 1
π

ˆ π

−π

x sin(kx) dx.

Integrating by parts, we obtain

bk = 1
π

[
x cos(kx)

k
+ sin(kx)

k2

]π

−π

= 2
k

(−1)k+1.

Therefore, the Fourier series of f(x) = x is

x ∼ 2
(

sin x − sin(2x)
2

+ sin(3x)
3

− sin(4x)
4

+ · · ·
)

.

Remark Regarding convergence: standard tests such as the ratio and root tests are inconclusive. Nevertheless, the
series does converge on [−π, π], although at the endpoints we observe

Series at x = ±π ⇒ 0, f(±π) = ±π.

Definition 2 Let

sN (x) := a0

2
+

N∑
k=1

[
ak cos(kx) + bk sin(kx)

]
be the N -th partial sum of a Fourier series. We say the Fourier series converges at a point x if the limit

lim
N→∞

sN (x) = lim
N→∞

(
a0

2
+

N∑
k=1

[ak cos(kx) + bk sin(kx)]

)

exists and equals some number L. If, in addition, L = f(x), we say the Fourier series converges to f at x.

Remark

sN (x) = a0

2
+

N∑
k=1

[
ak cos(kx) + bk sin(kx)

]
,

is called a trigonometric polynomial because, by judicious (and repeated) applications of trigonometric
identities, it can be expressed as a polynomial in the functions cos x and sin x.

Conversely, every such polynomial can be expanded as a sum of sines and cosines of increasing frequency.
Remark The functions cos kx and sin kx are all periodic functions of period 2π, so if a Fourier series converges, the

limiting function f̃(x) must also be periodic with the same period.
Thus, it is unreasonable to expect that the Fourier series of a function like f(x) = x, which is not periodic

on [−π, π], converges everywhere. Instead, one should expect it to converge to its periodic extension.
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Definition 3 If f(x) is any function defined on −π ≤ x ≤ π, then there is a unique 2π-periodic function, called the
2π-periodic extension of f and denoted by f̃(x), such that

f̃(x) = f(x), −π < x < π,

and
f̃(±π) = f(π) + f(−π)

2
.

That is, f̃(x) equals f(x) on the interior of the interval and takes the average value of f at the endpoints.

Example The 2π-periodic function of f(x) = x is the sawtooth function, which takes the value 0 at odd integer
multiples of π (in fact, at all integer multiples of π, but for different reasons). Explicitly,

f̃(x) =

{
x − 2mπ, (2m − 1)π < x < (2m + 1)π,

0, x = (2m − 1)π,

for m ∈ Z.
Thus, f̃(x) is the 2π-periodic extension of f(x) = x.

x

f̃(x)

−π π

Definition 4 A function f(x) is called piecewise C1 on an interval [a, b] if it is defined, continuous, and continuously
differentiable except at a finite number of points

a ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ b.

At each exceptional point, the function and its derivative can have at worst a jump discontinuity. That
is, the left- and right-hand limits exist:

f(x−
k ) = lim

x→x−
k

f(x), f(x+
k ) = lim

x→x+
k

f(x),

f ′(x−
k ) = lim

x→x−
k

f ′(x), f ′(x+
k ) = lim

x→x+
k

f ′(x).

For a piecewise C1 function, an exceptional point is either a jump discontinuity, where the left- and right-
hand derivatives exist, or a corner, meaning a point where f is continuous so that f(x−

k ) = f(x+
k ), but

has different left- and right-hand derivatives.
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Theorem 5.1 If f̃(x) is a 2π-periodic, piecewise C1 function, then at any x ∈ R its Fourier series converges to f̃(x) if f̃
is continuous at x, and converges to

1
2
(
f̃(x+) + f̃(x−)

)
(the average of the left and right limits) if x is a jump discontinuity.
Thus, the Fourier series of a function defined and piecewise C1 on −π ≤ x ≤ π converges to the 2π-
periodic extension wherever said extension is continuous, and to the average of the jumps at the jump
discontinuities.

Example For example f(x) = x, we can replace the ∼ with an equality sign provided we are in the interior of the
interval, i.e. x ∈ (−π, π). Plugging in x = π

2 and observing that

sin
(
(2k + 1)π/2

)
= (−1)k,

equation becomes
π

2
= 2

(
sin π

2
− sin π

2
+

sin 3π
2

3
− sin 2π

4
+ · · ·

)
,

π

2
= 2

(
1 − 1

3
+ 1

5
− · · ·

)
.

Rearranging, we get a (very slowly converging) series for π. Namely, that 4 times the alternating sum of
the reciprocals of the odd numbers is π. That is,

π = 4
∞∑

k=0

(−1)k

2k + 1
= 4

(
1 − 1

3
+ 1

5
− · · ·

)
.

This series and its sum has, in some form or another, been known to humans for roughly 500 years, well
before Fourier series.

Remark To compute a Fourier series for a function initially defined on [0, π], one standard approach is to extend
it to a 2π-periodic function on R. Two efficient extensions to [−π, π] are obtained by using even and odd
reflections, which often simplify the Fourier coefficients.

Definition 5 A function f(x) is called odd if f(−x) = −f(x), and it is called even if f(−x) = f(x).

Lemma 2 1. The sum of two even functions is even, and the sum of two odd functions is odd.

2. The product of two even functions or two odd functions is even, while the product of an even function
and an odd function is odd.

Lemma 3 If f(x) is odd and integrable on the interval [−a, a], then
ˆ a

−a

f(x), dx = 0. If f(x) is even and integrable,

then
ˆ a

−a

f(x), dx = 2
ˆ a

0
f(x), dx.

Remark These facts will immediately simplify the computation of Fourier coefficients for 2π-periodic extensions.
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Proposition 1 If f(x) is even, then the coefficients of the sine functions in its Fourier expansion are all 0, so f(x) can be
represented by a Fourier cosine series:

f(x) ∼ a0

2
+

∞∑
k=1

ak cos kx,

where
ak = 2

π

ˆ π

0
f(x) cos(kx) dx, k = 0, 1, 2, . . .

Proposition 2 If f(x) is odd, then the Fourier cosine coefficients are all 0, so f(x) can be represented by a Fourier sine
series:

f(x) ∼
∞∑

k=1

bk sin kx,

where
bk = 2

π

ˆ π

0
f(x) sin(kx) dx, k = 1, 2, . . .

Remark Conversely, a convergent Fourier sine series always represents an odd function, while a convergent Fourier
cosine series always represents an even function.

Example The absolute value function |x| = f(x) is an even function, so bk = 0 and it has a Fourier cosine series.
Its coefficients are given by

a0 = 2
π

ˆ π

0
x dx = π

and

ak = 2
π

ˆ π

0
x cos kx dx =


0 k 6= 0 even,

− 4
k2π

k odd.

We can also use the convergence theorem to get another number theoretic result for this Fourier series.
We have

|x| ∼ π

2
− 4

π

(
cos x + cos 3x

9
+ cos 5x

25
+ · · ·

)
.

And we can write if x ∈ [−π, π]. More specifically, if we substitute x = 0, we can re-arrange to get

π2

8
=

∞∑
k=0

1
(2k + 1)2 =

(
1 + 1

9
+ 1

25
+ · · ·

)
.

Thus, the sum of the reciprocals of the odd squares is π2/8.

Remark It is worth noting that any function on [0, π], whether it be even or odd, will have an even or odd extension
to [−π, π]. For example if f(x) = sin x on [0, π], then its Fourier cosine series coefficients are given as

ak = 2
π

ˆ π

0
sin x cos kx dx =


4

(1 − k2)π
, k even,

0, k odd.

So we have

| sin x| ∼ 2
π

− 4
π

∞∑
j=1

cos 2jx

4j2 − 1
.

On the other hand sin x is already odd, and so its odd periodic extension is just sin x, which has Fourier
series sin x for the same reason 1 had Fourier series 1.
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Subsection 5.3

Complex Fourier series

Finally, it is often convenient to exploit Euler’s formula and use complex exponentials instead of sines and
cosines. Because we have

eikx = cos kx + i sin kx, e−ikx = cos kx − i sin kx

or
cos kx = eikx + e−ikx

2
, sin kx = eikx − e−ikx

2i
.

So if we have a series representation of f(x) in terms of sines and cosines, we can get one in terms of complex
exponentials and vice versa.

f(x) ∼ a0

2
+

∞∑
k=1

ak cos kx + bk sin kx ∼ a0

2
+

∞∑
k=1

(ak − ibk)
2

eikx + (ak + ibk)
2

e−ikx

∼
∞∑

k=−∞

ckeikx.

We note that as cn = 1
2 (an + ibn), we have, as we’ve defined an and bn via integration against f , that

ck = 1
2π

ˆ π

−π

f(x)e−ikx dx.

Example Write the complex Fourier series on [−π, π] for:

(a) f(x) = x2 + 1,

(b) w(x) =
∞∑

n=0

sin(2nx)
2n

.

Proof (a): For f(x) = x2 + 1,

c0 = 1
2π

ˆ π

−π

(1 + x2) dx = 1 + π2

3
,

and for n 6= 0,

cn = 1
2π

ˆ π

−π

(1 + x2)e−inx dx = 2(−1)n

n2 .

So
f(x) ∼ 1 + π2

3
+
∑
n 6=0

2(−1)n

n2 einx.

(b): For w(x) =
∑∞

n=0
sin(2nx)

2n , we note this is already a Fourier sine series with only frequencies k = 2n.
Recall

ck = 1
2 (ak − ibk), c−k = 1

2 (ak + ibk).

Here ak = 0 for all k, and bk = 0 unless k = 2n. Thus

c2n = − i

2n
, c−2n = i

2n
.

Hence

w(x) ∼
∞∑

n=0

(
c2nei2nx + c−2ne−i2nx

)
=

∞∑
n=0

ei2nx

i 2n+1 .



Fourier Series Change of scale 34

Subsection 5.4

Change of scale

So far all of the Fourier series we have dealt with have been for functions on the interval [−π, π], but it is
natural to sometimes want to compute Fourier series for functions defined on a different interval, say [−L, L].
In this case you can perform the change of variables y = πx

L so that y ∈ [−π, π] when x ∈ [−L, L]. Then for
a function f(x) on [−L, L] the rescaled function F (y) = f

(
L
π y
)

will be defined on [−π, π].
If we can compute the Fourier series of F :

F (y) ∼ a0

2
+

∞∑
k=1

ak cos ky + bk sin ky,

then we can revert to the original x variable by substituting in y = π
L x and get the Fourier series for F :

f(x) = f
(

π
L · L

π x
)

= F
(

π
L x
)

∼ a0

2
+

∞∑
k=1

ak cos
(

kπx
L

)
+ bk sin

(
kπx

L

)
.

The Fourier coefficients are

ak = 1
π

ˆ π

−π

F (y) cos ky dy, bk = 1
π

ˆ π

−π

F (y) sin ky dy.

Again, we can make the substitution that y = π
L x so dy = π

L dx in the integral and we get the formula for
the rescaled Fourier coefficients in the original x variables:

ak = 1
L

ˆ L

−L

f(x) cos
(

kπx
L

)
dx, bk = 1

L

ˆ L

−L

f(x) sin
(

kπx
L

)
dx.

For many practical purposes, this is the formula you want to remember, so we separate it out as a theorem.

Theorem 5.2 Let f(x) be an integrable function on [−L, L]. The Fourier series of the 2L periodic extension of f(x) is

f(x) ∼ a0

2
+

∞∑
k=1

ak cos
(

kπx

L

)
+ bk sin

(
kπx

L

)
,

where
ak = 1

L

ˆ L

−L

f(x) cos
(

kπx

L

)
dx, bk = 1

L

ˆ L

−L

f(x) sin
(

kπx

L

)
dx.

Likewise, the complex Fourier series on [−L, L] is

f(x) ∼
∞∑

k=−∞

cke
ikπx

L , ck = 1
2L

ˆ L

−L

f(x) e
ikπx

L dx.
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Subsection 5.5

Integration and Differentiation

5.5.1 Integration of Fourier Series
Let’s start this section with an observation. The zeroth coefficient of the Fourier series of a function f(x) on
[−π, π] is found by

a0

2
= 1

2π

ˆ π

−π

f(x) dx.

This says that the mean or average value of the function f(x) on the interval [−π, π] is its zeroth Fourier
coefficient (this fact is unchanged on any symmetric interval [−L, L]).

Suppose now we start with an integrable function, f(x) defined on [−π, π] and we write the Fourier
series of its 2π periodic extension

f(x) ∼ a0 +
∞∑

n=1

(
an cos(nx) + bn sin(nx)

)
.

We’d like to investigate its integral

g(x) =
ˆ x

0
f(y) dy.

Naively we’d expect to be able to integrate the series term by term, or to interchange the limits of integration
and summation (and indeed this is the case for some mild conditions on f as we shall see shortly). We have

g(x) =
ˆ x

0
f(y) dy ∼

ˆ x

0

(
a0 +

∞∑
n=1

(an cos(ny) + bn sin(ny))
)

dy

∼ a0x +
∞∑

n=1

(
an

ˆ x

0
cos(ny) dy + bn

ˆ x

0
sin(ny) dy

)

∼ a0x +
∞∑

n=1

(
an

n
sin(nx) − bn

n
cos(nx)

)
+

∞∑
n=1

bn

n
.

Let’s pause for a moment and analyse the last expression:

g(x) ∼ a0x +
∞∑

n=1

(
an

n
sin(nx) − bn

n
cos(nx)

)
+

∞∑
n=1

bn

n
.

The first thing to notice is that it is not a trigonometric series if a0 is not zero. If a0 is non-zero we can do
one of two things, we can bring the a0x over to get a Fourier series for g(x) − a0x:

g(x) − a0x ∼
∞∑

n=1

(
an

n
sin(nx) − bn

n
cos(nx)

)
+

∞∑
n=1

bn

n
.

Remark Notice that in light of the observation opening this section, that this says that the mean of the function´ x

0 f(y) dy − a0x is given by
1

2π

ˆ π

−π

(ˆ x

0
(f(y) − a0) dy

)
dx =

∞∑
n=1

bn

n
.

Further if we observe that
´ x

0 a0 dy = a0x is an odd function and so has mean zero, we have that the mean
of

g(x) =
ˆ x

0
f(y) dy
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itself is given by 1
n times the Fourier sine coefficients of its derivative f :

1
2π

ˆ π

−π

(ˆ x

0
f(y) dy

)
dx =

∞∑
n=1

bn

n
.

The other thing we could potentially do is to replace the function x with the Fourier series of the 2π
periodic extension of x on [−π, π]. We have already seen that for x ∈ [−π, π] we have

x ∼ 2
∞∑

n=1

(−1)n−1

n
sin(nx).

So substituting this in to the last expression we have that the previous equation becomes:

g(x) ∼
∞∑

n=1

bn

n
+

∞∑
n=1

(
an + 2a0(−1)n−1

n

)
sin(nx) +

∞∑
n=1

bn

n
cos(nx).

Theorem 5.3 If f is a piecewise continuous function with mean 0 on the interval [−π, π], then its Fourier series

f(x) ∼
∞∑

k=1

ak cos(kx) + bk sin(kx)

can be integrated term by term to produce the Fourier series

g(x) =
ˆ x

0
f(y) dy ∼ m +

∞∑
k=1

(
−bk

k
cos kx + ak

k
sin kx

)
.

The 0th term
m = 1

2π

ˆ π

−π

g(x) dx

is the mean of the integrated function.

Remark Even though we’ve restricted the previous theorem to mean zero functions, this can be avoided by defining a
new function f̃(x) = f(x) − a0, which is then mean zero, and then applying the theorem to it. Rearranging
and substituting in the Fourier series for x will produce the Fourier series of the integral of the original f(x).

Example The function f(x) = x does have mean zero, so we’re in the (slightly) simpler case and

x2

2
=
ˆ x

0
y dy ∼ −2

∞∑
n=1

(−1)n−1

n2 cos(nx) + 2
∞∑

n=1

(−1)n−1

n2 .

Let’s integrate again and see what we get

x3

6
∼ π2

6
x − 2

∞∑
n=1

(−1)n−1

n3 sin(nx).

Now again, we get something that isn’t a Fourier series, but again, we can replace the x with the Fourier
series of its 2π periodic extension to get

x3

6
∼ 2

∞∑
n=1

(
π2(−1)n−1

6n
− (−1)n−1

n3

)
sin(nx)

∼
∞∑

n=1

π2n2 − 6
3n3 (−1)n−1 sin(nx),

which you can (and should) check is indeed the Fourier series for the function x3

6 .
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5.5.2 Differentiation of Fourier Series
Something quite different happens when we try to differentiate Fourier series term-wise though. Let’s start
with the Fourier series of x.

x ∼ 2
∞∑

n=1

(−1)n−1

n
sin(nx).

Differentiating the left-hand side and the right-hand side term by term, we are led to the following

1 ∼ 2
∞∑

n=1
(−1)n−1 cos(nx). (5.1)

There are a couple of problems with this expression. First, the right hand side is not the Fourier series of 1.
We already know that the Fourier series of 1 is just the constant function 1. Secondly, looking at x = 0, we
get the seemingly meaningless expression

1 ∼ 2(1 − 1 + 1 − 1 + 1 − · · · ).

At ±π things are even worse. We have that cos(±nπ) = (−1)n so the series reads

1 ∼ −2(1 + 1 + 1 + 1 + · · · ).

Indeed, the right hand side does not converge for any value of x in the interval [−π, π]. So what is going
on? Well, first of all, the right hand side of (5.1) is not the Fourier series of x, but rather the sawtooth
function, which is not continuous at the points (2k + 1)π with k ∈ Z. So the derivative is 1 everywhere
except at odd multiples of π, where it is undefined.

The Fourier series for x will show up in the integral for any function with mean not equal to 0. This
means that integrating a function with mean not equal to zero and then differentiating will produce this
mess. But surely not all Fourier series "break" like the previous example. So we have the following:

Theorem 5.4 Let f(x) have a piecewise C2 and continuous 2π-periodic extension, then its Fourier series can be differ-
entiated term by term to produce the Fourier series of its derivative

f ′(x) ∼
∞∑

k=1

(kbk cos(kx) − kak sin(kx)) .

Subsection 5.6

Convergence of Fourier Series

Definition 1 We say that the sequence of functions fn(x) : I → R converges pointwise at x = a ∈ I if the limit of
fn(a) as n → ∞ exists (and is finite), i.e.

lim
n→∞

fn(a) = L.

In particular, this means that for each ε > 0 there exists an N = N(ε, a) such that if n > N then

|fn(a) − L| < ε.

If for every a ∈ I we have that the sequence fn converges pointwise, say

lim
n→∞

fn(a) = La,

then we can define a new function fL(x) on I where fL(a) = La. In this case we say that the sequence
fn(x) converges pointwise on I to fL(x).
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Figure 2. Uniform and non uniform convergence

In the previous, we saw that in order to get the sequence fn(a) close to its limit value, the number N
we chose depended on both the accuracy we required and the point a we were looking at. It is not always
necessary that the situation should be like this. In particular, if we are lucky, we can find that for each a ∈ I
the same value of N works. This is called uniform convergence of the sequence of functions on I.

Geometrically, this means that the sequence of functions is collapsing into a narrow tube around the
limiting function fL, and this tube works for all x ∈ I. (See Figure 2 on the left.)

Definition 2 We say that a sequence of functions fn(x) : I → R converges uniformly on the interval I, to the function
fL(x) if for each ε > 0 we have an N = N(ε) (that depends only on ε), such that for every a ∈ I, if n > N
we can write

|fn(x) − fL(x)| < ε.

The key difference here is that for each ε we must find a single N that works for all a ∈ I. We notice that
uniform convergence implies pointwise convergence, but not the other way round. As we saw in Example
4.1, pointwise convergence can occur for a sequence of continuous functions converging to a discontinuous
function, but we cannot have uniform convergence of continuous functions to a discontinuous function. The
reason is that if the jump discontinuity is larger than ε, then the εtube around the limit function near the
discontinuity will be disconnected, and so no continuous function can lie in the εtube on both sides of the
jump. (See Figure 2 on the right.) In fact, this is one of the main features of uniform convergence: it
preserves continuity in the limit.

Theorem 5.5 If fn(x) : I → R is a sequence of continuous functions and fn converges uniformly on I to fL(x), then
fL(x) is continuous.

In fact this theorem is very powerful, and often used in contrapositive form. That is, if a sequence of
continuous functions converges pointwise to a discontinuous function, then it cannot converge uniformly to
that function.

However, if we change the interval, avoiding the point of discontinuity of the limit function, then we may
have uniform convergence.

Example Consider the sequence fn(x) = xn on [0, 1], which converges pointwise to the discontinuous limit

f(x) =

{
0, 0 ≤ x < 1,

1, x = 1.

This convergence is not uniform on [0, 1] because of the discontinuity at x = 1. However, if we change the
interval to [0, 0.9], then fn converges uniformly to 0.
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Example Consider the sequence of functions f : [0, 5] → R given by

fn(x) = 2nx

1 + n2x2 .

Proof We first note that fn(0) = 0 for all n, and for any fixed x = a ∈ (0, 5] we have

fn(a) = 2na

1 + n2a2 ≤ 2na

n2a2 ≤ 2
na

.

To guarantee that fn(a) < ε, we need to choose

N = 2
aε

.

Then for n > N we obtain
fn(a) <

2
na

< ε.

Thus {fn} converges pointwise to 0 on [0, 5].
However, observe that here

N = N(ε, a) = 2
aε

,

so N depends on both ε and a. This shows we do not have uniform convergence. Indeed, at x = 1
n we find

fn

( 1
n

)
= 1.

Therefore, if ε < 1, the sequence {fn} cannot stay within ε of 0 for all x ∈ [0, 5]. Hence the convergence
is pointwise but not uniform.

However, you do have the following theorem

Theorem 5.6 Suppose that fn : I → R is a sequence of integrable functions on I = [a, b] and that fn(x) → f(x)
uniformly on [a, b]. Then the limit function f(x) is integrable on [a, b] and

ˆ b

a

f(x) dx = lim
n→∞

(ˆ b

a

fn(x) dx

)
=
ˆ b

a

(
lim

n→∞
fn(x) dx

)
.

That is, you can integrate the sequence and the sequence of integrals converges to the integral of the
limit. This is actually not totally necessary as we have seen. We can integrate a Fourier sequence term-wise
which does not converge uniformly and still produce the Fourier series of the integral as we’ve seen in theorem
5.2

What about differentiation? Well, there things are a bit more complicated. Here you need pointwise
convergence of the sequence, and uniform convergence of the sequence of derivatives.

Theorem 5.7 Suppose that fn : I → R is a sequence of C1 functions on an interval I = [a, b] and that fn(x) → f(x)
pointwise for each x ∈ I. If f ′

n(x) → ϕ uniformly on [a, b], then the function f is differentiable and
f ′(x) = ϕ(x) on [a, b]. Moreover, fn → f uniformly on [a, b].

This is a slightly stronger requirement than what is in theorem 5.3, as we shall see. At this point we have
covered uniform/pointwise convergence of sequences of functions, but we’re interested in the convergence of
series of functions, in particular Fourier series. Well, the convergence (uniform, or pointwise, or other) of an
infinite series of functions is by definition defined in terms of the sequence of partial sums of that series

sn(x) =
n∑

k=1

fk(x).
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That is if sn(x) converges uniformly or pointwise to a limiting function then the series is said to do the
same. We have the following two theorems that relate uniform convergence of series of functions to when you
can integrate and differentiate them term by term. These are essentially just restatements of the previous
theorems on sequences, but applied to series via the sequence of partial sums.

Theorem 5.8 Let uk(x) : I → R be a sequence of integrable functions on some interval I = [a, b] and suppose∑
k

uk(x)

converges uniformly on I. Then the sum

f(x) =
∞∑

k=1

uk(x)

is integrable on [a, b] and

ˆ b

a

f(x) dx =
ˆ b

a

( ∞∑
k=1

uk(x)

)
dx =

∞∑
k=1

(ˆ b

a

uk(x) dx

)

Theorem 5.9 Suppose the series
∞∑

k=1

uk(x) = f(x)

converges pointwise. If the differentiated series
∞∑

k=1

u′
k(x) = g(x)

is uniformly convergent, then the original series is uniformly convergent also and moreover f ′(x) = g(x).

Revisiting theorem 5.4, if we had a Fourier series of a piecewise Cn function with a jump discontinuity,
even though the Fourier series converges pointwise from the convergence theorem, and even though we can
integrate the series term by term, we could not hope to get uniform convergence on any interval containing
the discontinuity. We would however be able to get uniform convergence on any closed interval away from
the discontinuity.

Theorem 5.10 Weierstrass M-test
Suppose you have a sequence of functions uk(x) : I → R and suppose that for each k the function is
bounded on I

|uk(x)| ≤ mk for all x ∈ I,

where mk > 0 is a positive constant. If the series
∞∑

k=1

mk

converges, then the function series
∞∑

k=1

uk(x) = f(x)

converges uniformly and absolutely to a function f(x) for all x ∈ I. In particular, if the uk(x) are all
continuous then so is the sum f(x).
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What does this say about Fourier series? Well, the summands of a Fourier series of a real function f ,
written in complex form are

uk(x) = ckeikx,

and since f is real, and |eikx| = 1 for real x, we have that the summands are bounded by |cn|. Moreover, for
real functions c−n = cn and |z| = |z|, then we have that for real functions with a Fourier series,

f ∼
∞∑

k=−∞

ckeikx,

if the series of the absolute value (norm) of the coefficients

∞∑
k=−∞

|ck| = 2
∞∑

k=0

|ck| < ∞

converges, then the series
∞∑

k=−∞

ckeikx

converges uniformly to its limit f̃(x) which is a continuous function, with the same Fourier coefficients.
Interestingly, the M -test guarantees that if

∑
|ck| converges, then the Fourier series converges uniformly

to a continuous function, which we denote by f̃(x). However, this continuous limit function f̃ is not
necessarily identical to the original function f that was used to compute the Fourier coefficients. The reason
is that the integrals defining the coefficients ck are insensitive to the values of f at finitely many points.
Thus, if we alter a function at a finite set of points, the resulting Fourier coefficients remain unchanged, and
hence the Fourier series is the same.

In short, a function f with jump discontinuities and a “corrected” continuous version f̃ can share exactly
the same Fourier series. The M -test ensures that the series converges to this continuous version f̃ .

Now, typically, we’ve seen Fourier series coefficients look something like

Cn

kα

where Cn is a constant, or oscillating constants or something of that ilk. The important part is that |Cn| < C,
a constant, for all n (the formal name for this is that cn be O(1) or uniformly bounded by a constant). Then
the p-series test says that if α > 1, we have convergence of the series

∞∑
k=1

C

kα
.

This means that by the Weierstrass M -test we must have uniform convergence and by the uniform
convergence theorem, we must have a continuous limit. This has some striking implications.

First, starting with a Fourier series

f ∼
∞∑

k=−∞

ckeikx,

where
|ck| <

C

kα

and differentiating termwise we have that the coefficients of the differentiated series will be kck, so

|kck| <
Ck

kα
= C

kα−1 .

So in particular, if α > 2 we have uniform convergence of the series of derivatives, so our original Fourier
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series was differentiable and we’ve got a formula for the derivative of the Fourier series. Generalising this we
have

Theorem 5.11 If the Fourier coefficients satisfy
|ck| ≤ M

kα

for some α > n + 1, then the Fourier series converges uniformly to an n-times continuously differentiable
2π-periodic function.

This is really kind of striking — it says that the decay rate of Fourier series coefficients can tell you how
smooth the limiting function is. In particular if you decay like 1

k2 , you have a continuous function, almost
differentiable (piecewise C1 in fact), while better than 1

k2+α for any α > 0 means you have a continuously
differentiable (C1) function. If your Fourier coefficients decay faster than any polynomial rate (say at an
exponential rate for example), then the Fourier series will converge to an infinitely differentiable function.

Informally, in the other direction, we get one factor of 1
k for each derivative that is continuous (as a

periodic function) starting with the 0th one and ending with the first one that has a jump. We can see this
by integrating by parts. Suppose that f(x) is a continuous function with piecewise first derivative function
then

bk = 1
π

ˆ π

−π

f(x) sin(kx) dx = f(x) cos(kx)
kπ

∣∣∣∣π
x=−π

− 1
πk

ˆ π

−π

f ′(x) cos(kx) dx

since f is continuous and periodical, f(π) = f(−π)

bk = − 1
πk

ˆ π

−π

f ′(x) cos(kx) dx

but if f is piecewise C1, then |f ′| has a bound, say M , so we can bound the last integral and we have that

|bk| ≤ C

k
.

A similar argument holds for the ak’s. This can be seen in the Fourier series of the absolute value function.

Lemma 1 Riemann-Lebesgue lemma
Let f(x) be a piecewise continuous function on [−π, π], then its Fourier coefficients decay to zero as k → ∞.
That is,

lim
N→∞

aN = lim
N→∞

1
π

ˆ π

−π

f(x) cos(Nx) dx = 0

lim
N→∞

bN = lim
N→∞

1
π

ˆ π

−π

f(x) sin(Nx) dx = 0
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5.6.1 Proof of the convergence theorem
Now we will prove the Convergence Theorem. We want to show that for a piecewise C1 function f that is
also 2π periodic we have that the limit of the partial sums of the Fourier series is

lim
n→∞

sn(x) = f(x+) + f(x−)
2

(5.2)

We start by writing out the complex form of the partial sums of the Fourier series of f and substituting the
formula for the coefficients

sn(x) =
n∑

k=−n

ckeikx =
n∑

k=−n

(
1

2π

ˆ π

−π

f(y)e−iky dy

)
eikx

= 1
2π

ˆ π

−π

f(y)
n∑

k=−n

eik(x−y) dy. (5.3)

Now we want to look at this term
n∑

k=−n

eikt = e−int + · · · + e−it + 1 + eit + · · · + eint = e−int(1 + eit + · · · + ei(2n)t)

where we set t = x − y for simplicity. The key observation is that this is a (partial) geometric series so we
can use the form of the partial sums

m∑
k=0

ark = a + ar + ar2 + · · · + arm = a

(
rm+1 − 1

r − 1

)
.

With m = 2n and a = e−int and r = eit. We thus have
n∑

k=−n

eikt = e−int(ei(2n+1)t − 1)
eit − 1

= ei(n+1)t − e−int

eit − 1

= e−it/2(ei(n+1/2)t − e−int)
e−it/2(eit/2 − e−it/2)

= ei(n+1/2)t − e−i(n+1/2)t

eit/2 − e−it/2

=
sin
(
(n + 1/2)t

)
sin(t/2)

. (5.4)

Lemma 2 We have the following:

1. sin((n + 1/2)t)
sin(t/2)

= e−int + · · · + e−it + 1 + eit + · · · + eint is 2π-periodic.

2. 1
2π

´ π

−π

sin((n + 1/2)t)
sin(t/2)

dt = 1.

3. sin((n + 1/2)t)
sin(t/2)

= 1 + 2(cos t + cos 2t + · · · + cos nt).
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Now substituting eq. (5.4) into eq. (5.3), we have

sn(x) = 1
2π

ˆ π

−π

f(y)
sin
(
(n + 1

2 )(x − y)
)

sin
( 1

2 (x − y)
) dy. (5.5)

Now let ŷ = y − x, so ±π → ±π − x and dŷ = dy. Substituting in and cancelling the negatives of the
trigonometric functions we have

sn(x) = 1
2π

ˆ π−x

−π−x

f(ŷ + x)
sin
(
(n + 1

2 )ŷ
)

sin(ŷ/2)
dŷ

periodical= 1
2π

ˆ π

−π

f(ŷ + x)
sin
(
(n + 1

2 )ŷ
)

sin(ŷ/2)
dŷ.

Thus to prove eq. (5.2), it suffices to show

lim
n→∞

1
π

ˆ π

0
f(y + x) sin((n + 1/2)y)

sin(y/2)
dy = f(x±). (5.6)

The proofs of the formulas are identical, so we’ll show the one with the +. We have

1
π

ˆ π

0

sin((n + 1/2)y)
sin(y/2)

dy = 1
2π

ˆ π

−π

sin((n + 1/2)y)
sin(y/2)

dy = 1.

Using (2) in the lemma, if we multiply this integrand by f(x+) and take the difference between it and the
left-hand side of eq. (5.6), we want to show

lim
n→∞

1
π

ˆ π

0

f(x + y) − f(x+)
sin(y/2)

sin
(
(n + 1/2)y

)
dy = 0. (5.7)

We claim that for each fixed value of x the function

g(y) = f(x + y) − f(x+)
sin(y/2)

is piecewise continuous for all 0 ≤ y ≤ π. The only potential problem is at y = 0, but here we can use the
one-sided L’Hopital’s rule:

lim
y→0+

g(y) = lim
y→0+

f(x + y) − f(x+)
sin(y/2)

= lim
y→0+

f ′(x + y)
1
2 cos(y/2)

= 2f ′(x+).

Consequently, eq. (5.7) (and hence eq. (5.2)) will be established if we can show that

lim
n→∞

1
π

ˆ π

0
g(y) sin

(
(n + 1/2)y

)
dy = 0.

Expanding using the trigonometric formula for sums we have

1
π

ˆ π

0
g(y) sin

(
(n + 1/2)y

)
dy = 1

π

(ˆ π

0
g(y) sin(y/2) cos(ny) dy +

ˆ π

0
g(y) cos(y/2) sin(ny) dy

)
.

But each of these terms vanishes because of the Riemann-Lebesgue Lemma.
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