1.1 - Amino Acids and Protein Structure

Gibbs Free Energy

- the energy of a chemical reaction that is available to do work
 - o aka 'available energy'
- ΔG = change in Gibbs free energy = G(products) G(reactants)
- · Gibbs free energy takes into account enthalpy (heat) and entropy (disorder)
 - ΔG = ΔH TΔS
 - ∆H change in enthalpy
 - ∆S change in entropy
 - T temperature in Kelvin
- -ΔG = exergonic reaction → free energy is released; favourable, spontaneous reaction
 - free energy of the products is lower than free energy of the reactants
- +∆G = endergonic reaction → free energy is absorbed; unfavourable, non-spontaneous reaction
 - free energy of reactants is lower than free energy of the products
- -ΔH → exothermic, heat released
- $+\Delta H \rightarrow$ endothermic, heat absorbed
- $+\Delta S \rightarrow$ more disorder
- $-\Delta S \rightarrow$ less disorder

How do we get $-\Delta G$?

- ΔG = ΔH TΔS
- so to get -ΔG, we need:
 - -ΔH

 - or any combination that leaves ΔG negative

$$K_{eq} = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}}$$

K = the thermodynamic equilibrium constant for the reaction

- describes the position of the reaction at equilibrium (the relative concentrations of each component at equilibrium)
 - remember K>1 = more products than reactants; K<1 = more reactants than products, K=1 → same concentration of products and reactants

Free Energy and Equilibrium

$$\begin{aligned} \mathsf{aA} + \mathsf{bB} & \rightleftharpoons \mathsf{cC} + \mathsf{dD} \\ \Delta G &= \Delta G^o + RT \ln \frac{[C]_i^c[D]_i^d}{[A]_i^a[B]_i^b} \end{aligned}$$

• ΔG - the actual free energy change for the reaction

- o describes the amount of work that the reaction can do
- ΔG is variable (depends on how far the reaction is from equilibrium)
 - if the reaction starts further away from equilibrium, more work is needed to be done before the reaction can reach equilibrium
- ΔG depends on:
 - the initial concentrations of the reactants and products at the start of the reaction
 - ΔG° the free energy change under standard conditions (fixed)
 - a constant for the particular reaction, measured under standard conditions
 - the amount of energy that the reaction would absorb/release under standard conditions
- so ΔG is variable, but ΔG° is fixed

Standard conditions

- use of standard conditions allows free energy changes to be easily compared
- 298K (25 degrees celsius)
- gases at partial pressure of 1 atm
- reactants and products at 1M concentrations (except H+ in biochemistry standard conditions because that is pH 0, which will cause our enzymes to denature/be inactive)
- reactions in biochemistry standard conditions must occur in a well-buffered aqueous solution of pH 7 AND have 1mM of Magnesium (because many enzymes use Mg as a cofactor) → use ΔG^{ro}
- so $\Delta G = \Delta G'^{\circ}$ at standard conditions (ie the free energy change under standard conditions)

ΔG is 0 at equilibrium

- the reaction can do no more work at equilibrium
- so ΔG° is related to the equilibrium constant, making it a constant

Free energy allows us to predict:

- what is the driving force of the reaction? enthalpy or entropy changes or both?
- · what is the position of the reaction at equilibrium
- is the reaction spontaneous?
- under what initial conditions will a reaction occur spontaneously?
- does the reaction need to be coupled with a favourable reaction?

Ways to make unfavourable reactions favourable:

- 1. keep the concentration of products much lower than reactants
 - a. whether a reaction is spontaneous or not depends on ΔG , NOT ΔG° (ΔG° can still be positive)
 - b. the ratio of products/reactants $\underline{\text{MUST BE } < 1}$ for $\underline{\text{In}}$ (products/reactants) to be negative
 - c. so we keep the concentration of reactants $\mbox{H\sc i}\mbox{GH},$ and the concentration of products LOW
 - d. this can be done by:
 - i. removing one or more products at a much faster rate than it is produced
 - 1. eg in reaction of glycolysis, aldolase (enzyme) converts F-1,6-bisP to DHAP and GA-3-P
 - 2. but GA-3-P is rapidly consumed by the next step, which keeps the product concentration low
 - ii. replenishing one reactant at a rate much faster than it is removed

- 1. eg in gluconeogenesis, glucose-6-phosphate is transported from the cytosol into the lumen of the ER to feed glucose-6-phosphatase
- e. these reactions are now 'kinetically driven'
- 2. couple the unfavourable reaction (+ΔG'°) with a favourable reaction (very -ΔG'°) in the active site of an enzyme
 - a. by coupling reactions that share reactants and products, we can add the $\Delta G'^o$ of the reactions together to give us a negative $\Delta G'^o$
 - i. it is a very good start to have a negative $\Delta G^{\prime \circ}$
 - b. this reaction is now thermodynamically driven
 - c. this describes favourability under standard condition, we must always consider how actual conditions affect free energy change

ATP

- · adenosine triphosphate
- · ATP is a nucleotide
 - a nucleotide has a base (adenine), a sugar (ribose) and phosphate groups (3 phosphate groups)
- ADP adenine + ribose + 2 phosphate groups
- nucleoside → base + sugar
- there is a lot of energy released when the phosphoanhydride bonds undergoes hydrolysis

Bond energy

- · energy is required to break bonds
- · energy is released when any bond forms
- energy required to break bonds in the reactants is different to the energy released from bonds being formed in the products
- a favourable reaction is one where we get more energy out than energy put in to break the bond

ATP Hydrolysis

- ATP + H2O \leftrightarrow ADP + Pi ($\Delta G'^{\circ} = -30.5 \text{ kJ/mol}$)
- so -30.5 kJ/mol of energy is released for this reaction
 - but the overall ΔG depends on [ATP], [ADP] and [Pi]
 - ΔG'° is also pH dependent (H+reactant/product) and [Mg2+] dependent
- nevertheless, this reaction is highly exergonic
- in order for a reaction to be favourable and spontaneous, the energy of the reactants must be higher than the energy of the products (the reactants must be less stable than the products)
 - ATP is less stable than ADP there are 4 negative charges adjacent to one another in ATP, but only 3 negative charges adjacent to
 each other in ADP
 - so the phosphoanhydride bonds between the phosphate groups in ATP experience more repulsion and strain, making them weaker
 - the phosphoanhydride bonds between phosphate groups in ADP experience less repulsion and strain, making them stronger
 - Pi produced from hydrolysis of ATP is also very stable because multiple resonance states exist
- so OVERALL, the products are more stable than the reactants
- therefore, the hydrolysis of ATP releases energy because:
 - ATP has a higher negative charge density than ADP → 4 negative charges next to each other compared to 3 (so ATP is less stable)
 - Pi is very stable because it has multiple resonance states
 - ATP phosphoanhydride bonds are relatively weak

- o ADP phosphoanhydride bonds and Pi bonds are relatively strong
- ATP is not an energy-rich molecule, rather the hydrolysis of ATP releases a lot of energy

Proteins

- main agents of biological functions involved in:
 - o catalysis enzymes eg enolase in the glycolytic pathway and DNA polymerase in DNA replication
 - o transport eg haemoglobin to transport O2 and GLUT 1 to transport glucose across cell membranes
 - o structure collagen and keratin
 - o motion myosin and actin
 - o signalling (transduction) receptors eg insulin and glucagon receptors that detect hormones in blood
- proteins are linear heteropolymers of alpha-amino acids
 - o alpha amino acids have 4 substituents connected to the alpha carbon and is tetrahedral
- amino acids have properties that make them suitable to carry out biological functions:
 - o capacity to polymerise
 - o useful acid-base properties
 - varied physical properties
 - varied chemical functionality

Functional groups of amino acids

- all alpha amino acids (except proline) have common features
 - an acidic carboxyl group connected to the alpha carbon
 - carboxyl can be COO- or COOH
 - a basic amino group connected to the alpha carbon
 - amino can be NH2 or NH3+
 - an alpha hydrogen connected to the alpha carbon
- the 4th substituent is a unique feature of each amino acid (R group)

Chirality

- because amino acids have a carbon attached to 4 different substituents in a tetrahedral shape, they are chiral (they can either be Dor L-) → except glycine
- naturally occurring proteins ONLY consist of L-amino acids
- D- and L- describe the optical properties of the amino acids based on rotation of plane of polarised light when viewed from the light source
 - Dextrotatory (+): right or clockwise rotation
 - Levorotatory (-): left or anticlockwise rotation
- however, D-amino acids do not all rotate light clockwise and L-amino acids do not all rotate light anticlockwise
- in biochemistry, D- and L- refer to an empirical naming system based on what molecule synthesises them:
 - D-amino acids made by starting synthesis from D-glyceraldehyde
 - L-amino acids are made by starting synthesis from L-glyceraldehyde
- to determine the chirality of the alpha-carbon, look down the alpha hydrogen bond:
 - o if you can read CORN clockwise, then it is a L-amino acid
 - if CORN is read anticlockwise, then it is a D-amino acid