
COMP10001

Numerical Expressions

Expressions and Statements
Two important structural terms for code are statements and expressions. These form the structure of
each and every program.

Two important structural terms for code are statements and expressions. These form the structure
of each and every program.

A statement is any valid line of Python code. Think of it like a sentence in a book. The following are
all statements:

a = 5
print('this is a statement')
9 + 11

An expression is, as a simplified definition, a statement which evaluates to some value.

All expressions are statements, but not all statements are expressions. Only statements which
evaluate to some value are expressions. (2 + 3) * (5 - 7) is both a statement and an expression.

Data Types

Type Description

 int For whole numbers such as: -3, -5, or 10

 float For real numbers such as: -3.0, 0.5, or 3.14159

 bool
The Boolean type. For storing True and False (only those two values;
Booleans allow for no grey areas!).

 str (=
 "string")

For chunks of text, eg: "Hello, I study Python"

 tuple For combinations of objects, eg: (1, 2, 3) or (1.0, "hello", "frank")

Type Description

 list
A more powerful way of storing lists of objects, eg: [1, 3, 4] or
 [1.0, "hello", "frank"]

 dict
We will see this later ... maybe you can guess what it does. eg:
 {"bob": 34, "frankenstein": 203}

Note that you can check the data type of any object with the type function.

print(type("<class 'dict'>"))

Output:

<class 'str'>

Integers and Float

Expression Result

 int (*,+,-) int int

 int / int float

 float (*,+,-,/) float float

 float (*,+,-,/) int float

 int (*,+,-,/) float float

Floating point numbers allow us to represent a large set of numbers. Since there are infinitely many
numbers (even in the range of -1 to 1) and the float data type has only a fixed amount of computer
storage space available, some numbers will inevitably have rounding errors.

number_a = 12_345_678_901_234_567_890
number_b = 0.1
number_c = number_a + number_b - number_a
print(number_c)

Output:

0.0

Type Conversions and Input
Type casting is the process of converting a value from one data type to another.
Casting can be achieved by using the type's name as a function. For example, int() converts
the value inside brackets into an integer.
The input() function always returns a string, so casting is a useful way to convert input text
into your preferred type.

More Operators
The // integer division or floor division operator performs division but returns the result as an
 int by truncating the fractional part.
The % modulo operator returns the remainder when the first operand is divided by the second.
The ** exponentiation operator returns the value of the first operand raised to the power of the
second.

Conditonals

Type Conversion and Booleans

print(bool(1))
print(bool(-2.0))
print(bool("False"))

Output:

True
True
True

print(bool(0))
print(bool(0.0))
print(bool(""))
print(bool(False))

Output:

False
False
False
False

For every type, the "default" value converts to False , and everything else converts to True . For
numeric types, this is the zero value, for strings it is the empty string, and for Booleans (not that you
would ever want to convert a boolean into itself) it is False .

Relational Operators
Python supports six relational operators, summarized in the following table:

Python Meaning Math Notation

 < less than <

 <= less than or equal ≤

 == equal =

 != not equal ≠

 > greater than >

 >= greater than or equal ≥

When applied, each of these relational operators evaluates to a Boolean.

A Common Mistake

a = 1 + 1
b = 1
print(a = b)

In practice, the final line print(a = b) is an assignment, rather than a test for equality (which would be
print(a == b). Since assignment does not evaluate to anything (i.e. isn't an expression) it cannot be
printed and Python will show an error message.

String Comparisons
All six relational operators can also be applied to strings.

print('he' < 'hi')
print('Hell' >= 'Hello')

Output:

True
False

print('h' > 'H')
print('Z' < 'a')

Output:

True
False

print(ord('A'))
print(ord('a'))
print('a' > 'A')

Output:

65
97
True

Substrings

print('moo' in 'wooloomooloo')
print('wooloomooloo' in 'moo')

Output:

True
False

 Not commutative

Logical Expressions
Logical expressions are expressions which evaluate to a bool value. For instance, an expression
using relational operators like 3 < 5 is a logical expression. A logical expression could also be just a
literal value True or False , with no operators at all: True evaluates to True , after all!

Logical Operators: Combining Truth
To combine tests which evaluate to Boolean variables, we use logical operators, which take a pre-
determined number of Boolean inputs and return a single Boolean value.

Python has two binary logical operators that apply to two Boolean variables:

 and

 or

and one unary logical operator that applies to a single Boolean variable

 not

The not operator negates the logical expression it is applied to: if the expression exp is False ,
then not exp is True , and vice versa.

exp = False
print(not exp)

The rules for and and or are summarized as follows:

A B A and B A or B

False False False False

True False False True

False True False True

True True True True

That is, for and to evaluate to True , both logical expressions it applies to must be True ;
for or , on the other hand, if either (or both) of the logical expressions it applies to is True , the
combination is also True .

Logical Operators and Precedence
Just as Python defined precedence over arithmetic operators,
it also defines precedence over logical and relational operators, as follows:

relational operators (including in) > not > and > or

That is, relational operators are evaluated first, followed by not , etc.

print(not 1 > 2 and 1 > 0 or "din" in "coding")

Output:

True

Boolean and Logical Operator Summary
1. A way of expressing truth, to store whether a given condition holds or not.

This is done with Boolean values which can only be either true or false.
In Python the bool type holds one boolean value, either True or False
Other types can be converted to bool with the bool() function.
The number zero or an empty string will convert to False ; any other value will convert to
 True .

2. A way of testing for a given condition, often based on comparison between values.
Python's six relational operators (>= , > , == , != , < , <=) compare two values,
evaluating to a boolean result.

It's especially common to confuse equality == and assignment = operators, so watch out
for this.
 in can be used to test whether a substring is contained inside a superstring.
A logical expression is any expression which evaluates to a bool result.
Python's three logical operators and , or and not combine boolean values, or the
results of logical expressions.
 and and or are binary operators, combining two boolean values into one. not is a unary
operator, negating one particular boolean value.
Python defines precedence over logical and relational operators as follows (from highest to
lowest):

relational operators (including `in`) > not > and > or

Brackets are advised to make the order explicit.
It is possible to chain relational operators to test for more complex ranges.

Conditional Blocks

n = int(input("Enter an integer: "))
if 0 < n < 6:
 print('You entered a positive integer less than six.')
print('Try again with another integer!')

The first print() statement here is indented. This is how Python knows what code to run when the
 if condition evaluates to True .

The combined set of indented statements underneath the if line is termed a block.
The general form of an if statement is as follows:

if <condition>:
 <block of statements>

The <condition> is usually a logical expression, involving relational or logical operators.
The indented block of statements is only executed if the condition evaluates to True .
Note that this notion of "block" is very important in Python,
and will come up again in the context of both functions and iteration.

Choosing among Two Alternatives
 if-else statement:

if <condition>:
 <first block of statements>
else:
 <alternative block of statements>

Sequences
The main sequence data types we will deal with in this course are:

strings
lists
tuples

Strings as Sequences
Strings are sequences of characters. Python numbers the position of each character within a string,
starting with the first character at position number 0, and proceeding sequentially from left to right.

s = "The number is 42"
print(s[0])
print(s[1])

Output:

T
h

The largest valid index is one less than the length of the string (remember that we start counting from
0). To find out the largest valid index in a string, Python has a built-in function for that purpose: the
 len() function. The len() function is used like this:

s = "The number is 42"
n = len(s)
print(n)
print(len("Hello"))

Output:

17
5

Note that len() works a bit like the print() function: you give it the string you want to measure
the length of inside parentheses. However, unlike the print() function (which has no output) the
output of len() is an int : the number of characters in the string.

Beware that the empty string has no characters, not even at index 0.

Negative String Indexing

s = "The number is 42."
print(s[-1])
print(s[-2])
print(s[-3])
print(s[-17])

Output:

 .
 2
 4
 T

Note the negative indexes are one-offset (i.e. start from -1) while the positive indexes are zero-
offset (i.e. start from 0). Why do you think this is?

Accessing Substrings (Slicing)

s = "The number is 42."
print(s[1] + s[2] + s[3] + s[4] + s[5])

s = "The number is 42."
print(s[1:6])

Both will ouput he nu

More Slicing

s = "The number is 42."
print(s[:5])
print(s[5:])
print(s[:])

Output:

The n
umber is 42.
The number is 42.

Changing the Step Size and Direction
You can specify a third number in a slice (after a second colon) which indicates how much to step
through the sequence by for each item included in the slice. By default, this number is 1, indicating
that every element should be included. If, instead of every item you wanted every second one, you
can use a step value of 2:

s = "abcdef"
print(s[::2])

Output:

ace

If the step is -1, it reverses the direction of the sequence you are slicing. Note that the direction of the
indices must be changed also (the rightmost character is now the start index and the leftmost is the
end index):

s = "abcdef"
print(s[2::-1])
print(s[2:0:-1])
print(s[-4:-6:-1])

Output:

cba
cb
cb

Extension to Lists
Lists are for storing sequences of possibly different objects.
A list is a sequence just like a string, so there are many similarities between them. Let's compare:
while strings are a sequence of characters, lists are sequences of anything. While strings use ' or
 " as a delimiter, lists use [] (with a comma used to separate each item). Just like strings, lists can
contain any number of elements and can be indexed and sliced, forwards and backwards, using the
same syntax we learned earlier.

my_list = ['hello', 'world']
my_index = my_list[1]
print("index:", my_index)
print("slice:", my_slice)
print("equality:", my_index == my_slice)

Output:

index: world
slice: ['world']
equality: False

Extension to Tuples
A tuple is defined similarly to a list , but with round brackets (or "parentheses") rather than
square brackets. An empty tuple is a pair of round brackets with nothing between them. A tuple with
one item is a pair of round brackets around a value followed by a comma. This is essentially the same

as a list in that it can contain any combination of objects, but it can't be changed after creation (it
is immutable).

Nested Sequences
Elements of nested sequences can be accessed by indexing twice.

my_tuple= ('name', 3, ['a', 'nested', 'list'], 'age')
print(my_tuple[2])
print(my_tuple[2][1])
print(my_tuple[2][1][:4])

Output:

['a', 'nested', 'list']
nested
nest

Basic Functions and Methods

Calculate the number of standard drinks
contained in `volume` litres of alcoholic
drink with `percentage` % of alcohol
def std_drinks(volume, percentage):
 return volume * percentage * 0.789

We use the function to do the calculation
print(std_drinks(0.375, 13.5))

The function name is std_drinks . volume and percentage are called parameters. They are very
much like variables as you have seen to date, and define the inputs to the function. They take the
values you provide when you call (i.e. use) the function. The values themselves are called
arguments. The function is called by placing a pair of brackets () after the function name, and
putting the arguments inside them.

Anatomy of a Function Definition
The basic components of a function are:

1. the function name;
2. the parameters;
3. the body, where the actual computation associated with the function occurs;
4. some mechanism for returning a value and exiting the function.

Important Return Notes
When the return statement is executed in a function, the function stops immediately, and returns
the value given. This means that anything in your function after the return statement will not be
executed.

def a_function():
 print("Returning a number:")
 return 1
 print("Returning another number:")
 return 3

print(a_function())

Output:

Returning a number:
1

However, it can be useful to have many return statements, if they are each executed in different
circumstances. For example, they could be in different branches of an if..elif..else statement.

The other important point about return is that there doesn't have to be a return value.

def print_twice(output):
 print(output)
 print(output)
 return

print_twice("Hello there")

Output:

