SCIE1106 Condensed Summary

Theme 1: Basics

Structure of Eukaryotic & Prokaryotic Cells 1

Criteria that describe living "things".

Can reproduce.

Can respond to stimuli.

Can grow and develop.

Can transform matter and energy.

Display homeostasis = maintain a relatively constant internal environment.

Are highly organised.

Show adaptations to their environment.

Are made up of cells.

Cells are the basic unit of life.

Membrane-enclosed units = separation of cellular contents from the environment. Contain cytoplasm.

Basic chemistry shared by all cells.

All store their genetic material as DNA.

Same basic genetic mechanisms

Genetic material is replicated and passed on via cell division.

Information flow uses the same chemical machinery.

All contain the same 20 amino acids.

Why cells are so similar in chemistry and composition

Same common ancestor (3.5 billion years ago)

3 major divisions = eubacteria, archaea, eukaryotes.

Characteristics of prokaryotic and eukaryotic cells.

Prokaryotes

Lack a nucleus and intracellular organelles.

Most diverse group with many growth forms.

Circular DNA in nucleoid in cytosol.

Quick reproduction.

Use many energy sources

Organotrophic = organic molecules.

Lithotrophic = inorganic molecules

Phototrophic = light

Eubacteria = common environments.

Archaea bacteria = <u>hostile</u> environments.

Eukaryotes

Have a nucleus and intracellular organelles.

Animals, plants, and fungi.

Roles of cellular structures found in prokaryotic and eukaryotic cells.

Cytoplasm and cytosol

Cytoplasm = entire content within the cell membrane <u>excluding the nucleus</u>.

Cytosol = molecules crowded together forming water-based gel.

Eukaryotes = cytosol is the fluid part of the cytoplasm. Organelles are excluded.

Prokaryotes = cytoplasm = cytosol.

Many chemical reactions occur.

Ribosomes

Protein synthesis.

Eukaryotes are larger (80S) than prokaryotes (70S).

Cytosolic = free or attached to endoplasmic reticulum (80S).

In mitochondria/chloroplasts = bacterial size (70S).

Cytoskeleton

Provide structure and organise internal space.

Made up of proteins forming filamentous structures.

In eukaryotes:

Actin filaments (7nm)

Respond to stimuli.

Reorganize and change shape of cell.

Allows movement.

Intermediate filaments (10nm)

Support nuclear envelope.

Attachment for chromosomes.

Distribute force to cytosol preventing tearing.

Microtubules (25nm)

Organise cytoplasm.

Intracellular transport.

Maintain structure.

Form mitotic spindle.

Backbone of cilia and flagella.

Composition and roles of cellular membranes.

Cell signalling.

Transport of solutes via transport proteins.

Movement and cell growth.

Double membranes = nucleus, mitochondria, chloroplasts.

Selectively permeable:

<u>Small nonpolar</u> molecules can cross freely.

Only some small uncharged polar molecules can cross freely.

<u>Large uncharged polar</u> molecules can hardly cross.

<u>Charged molecules</u> and <u>ions</u> cannot cross except through transport proteins.

Integral proteins = embedded in the bilayer.

Peripheral proteins = attached to the bilayer.