SCIE1106: Molecular Biology of the Cell

Theme 1: Lecture schedule and learning materials

Structure of Eukaryotic & Prokaryotic Cells 1

- Apply criteria that describe living "things".
 - o Can reproduce.
 - Can respond to stimuli.
 - Can grow and develop.
 - Can transform matter and energy.
 - Display homeostasis = maintain a relatively constant internal environment.
 - Are highly organised.
 - Show adaptations to their environment.
 - o Are made up of cells.
- Memorize that cells are the basic unit of life.
 - Huge variety of sizes, forms and functions.
 - Membrane-enclosed units → separation of cellular contents from the environment.
 - Contain cytoplasm.
- Give a brief overview of the basic chemistry shared by all cells.
 - All store their genetic material as DNA.
 - Same basic genetic mechanisms.
 - Genetic material is replicated and passed on via cell division.
 - Information flow uses the same chemical machinery.
 - All contain the same 20 amino acids.
- Explain why cells are so similar in chemistry and composition
 - Same common ancestor (3.5 billion years ago)
 - Evolution resulted in divergence, modification, adaptation and specialization.
 - Family tree of life contains 3 major divisions: eubacteria, archaea, eukaryotes.
- Memorize, identify and contrast characteristics of prokaryotic and eukaryotic cells.
 - Prokaryotes
 - Lack a nucleus and intracellular organelles → only have a cell wall, cytoplasm, cytoskeleton, plasma membrane, ribosomes, and flagellum.
 - Circular DNA in nucleoid in cytosol.

- Most diverse group with many growth forms.
- Circular DNA in nucleoid in cytosol.
- Quick reproduction
- Use many energy sources
 - Organotrophic = organic molecules.
 - Lithotrophic = inorganic molecules
 - Phototrophic = light
- Eubacteria (common environments) and archaea bacteria (hostile environments).

Eukaryotes

- Have a nucleus and intracellular organelles → mitochondria, chloroplasts, endoplasmic reticulum, golgi apparatus, endomembrane system.
- Animals, plants, and fungi.
- Explain the roles of cellular structures found in prokaryotic and eukaryotic cells.

Cytoplasm and cytosol

- Cytoplasm = entire content within the cell membrane excluding the nucleus.
- Cytosol = molecules crowded together forming water-based gel.
- Eukaryotes → cytosol is the fluid part of the cytoplasm. Organelles are excluded.
- Prokaryotes → cytoplasm = cytosol.
- Many chemical reactions occur (glycolysis, protein synthesis).

Ribosomes

- Protein syntheses.
- Eukaryotes are larger (80S) than prokaryotes (70S).
- Cytosolic = free or attached to endoplasmic reticulum (80S).
- In mitochondria/chloroplasts = bacterial size (70S).

Cytoskeleton

- Provide structure and organise internal space.
- Made up of proteins forming filamentous structures.

In eukaryotes:

- Actin filaments (7nm) = respond to stimuli; reorganize and change shape of cell; allows movement.
- Intermediate filaments (10nm) = support nuclear envelope; attachment for chromosomes; distribute force to cytosol preventing tearing.

- microtubules (25nm) = organise cytoplasm;
 intracellular transport; maintain structure; form mitotic spindle, backbone of cilia and flagella.
- Describe the composition and roles of cellular membranes.
 - Cell signalling.
 - Transport of solutes via transport proteins.
 - Movement and cell growth.
 - Double membranes = nucleus, mitochondria, chloroplasts.
 - Selectively permeable:
 - Small nonpolar molecules can cross freely.
 - Only some small uncharged polar molecules can cross freely.
 - Large uncharged polar molecules can hardly cross.
 - Charged molecules and ions cannot cross except through transport proteins.
 - o Integral proteins = embedded in the bilayer.
 - Peripheral proteins = attached to the bilayer.
 - Glycolipids = carbohydrates attached to lipids.
 - Glycoproteins = carbohydrates attached to proteins.
 - Cell signalling.
 - Protection from chemical and mechanical damage.
 - Cell adhesion.

Structure of Eukaryotic & Prokaryotic Cells 2

- Remember single membrane organelles and their functions.
 - Endoplasmic reticulum
 - Flattened sacs and cisterna; in cytosol; connected to nuclear membrane.
 - Synthesize membrane lipids and export of molecules.
 - Rough ER → ribosomes → proteins synthesized + carbohydrate addition to proteins.
 - Smooth ER \rightarrow no ribosomes \rightarrow lipid synthesis.
 - Golgi apparatus
 - Stacks of cisternae.
 - Cis face = vesicles arrive from ER.
 - *Trans face* = vesicles pinch off and move towards plasma membrane.
 - Routing of proteins to intracellular locations.