Aortic disease

- Types of aortic diseases:

 Stenosis Narrowing

 Thrombosis clot

 Embolus travelling clot

 Dissection tearing

 Aneurysm swelling

Aorta anatomy: Layers:

- s: Tunica intima
- Tunica media
 Tunica adventitia

Branches: - Thoracic: ABCS

- Thoracic: ABCS

 Brachiocephalic

 Right subclavian

 Right common carotid

 Left common carotid

 Left subclavian

 Abdominal:

 Superior suprarenal

 Middle suprarenal

 Coeliac (ventral)

- SMA (ventral)

- Renal
 Inferior suprarenal
 Gonadal
- IMA (ventral) Left and right common iliacs

Stanford, or BeBakev

Stanford (A/B):

- Type A: Ascending aorta

- Type B: Below/descending aorta

- aorta

 DeBakey: BAD

 Type I: Both (asc + desc)
 Type II: Ascending
 Type III: Descending

- Diagnosis: Clinical:
 - Chest pain radiating to back (usually between shoulder blades)
 Different pulse pressures (BP both arms)
 Different blood flow to the left vs right subclavian arteries
 Hypotension (bleeding)

Predisposing factors:

Complications: Rupture
 Aortic branch occlusion

Pregnancy Aortic valve diseas

Age Connective tissue disease e.g. Marfans Autoimmune vasculitis

Aneurysms latrogenic causes e.g. catheterisation Cocaine/methaphetamine use

Acute coronary syndrome PE Pericarditis/myocarditis Oesophageal rupture Pancreatitis

- Imaging:
 C Taortogram (angio the aorta) only if pt stable to do so
 Angiogram = contrast to visualise blood vessels

- Primary survey:
 A Airway: Is it patent?
 B Breathing: RATES
 R Rate

- A Auscultation T Trachea Midline?
- E Exertion S Saturation (O2) and symmetry - S - Saturation (O2) and symmet C - Circulation - BP, HR - Radial-Radial delay - IV acces D - Disability - GCS, drugs, disability, diabetes E - Exposure - Wounds, temp., etc

- ECG

- CG
 May be normal, or show non-specific changes
 LVH and strain (d/t long standing HTN)
- CXR Troponin (rare elevation in dissection)

- Troponin (tare excess)

 Other investigations:

 FBP

 UECs + glucose

 Coags

 D-dimer elevated in dissection

- Management:

 If stable, conservative management

 o Stanford B/DeBakey 3

 o High rate of morality with ascending aorta

 - ABCs and large bore IV access
 Monitoring Pulse ox + ECG continuous, arterial line if possible
 Hypotension

 Most pts with AD have HTN. If hypotensive = bad

 IV fluids
- IV Hulds
 Analgesia IV opliods
 Beta blockers ESSENTIAL started as soon as diagnosis is made
 Vasodilators 6TN only after BB's
 Surgery or EVAR

- Arteriomegaly: Diffuse enlargement of an artery
- Arteriomegaly: Diffuse emoly-b----- Ectasia: Diffuse or focal dilation
 Increased diameter of >50% of normal
- Aneurysm: Focal dilation

 o Increased dimeter of >50% of normal
- o Increaseu unincia.

 Types:

 Ascending cardiothoracic surgery

 Descending vascular surgery

 Thoracic

 Abdominal

- True vs false aneurysm:

 True aneurysm; Incorporates all 3 layers of the vessel wall

 False aneurysm AKA pseudoaneurysm; Usually d/t

Common locations: - Aorto-iliac: 40%

- Femoro-popliteal: 25%
- If presence of popliteal aneurysm, then 50% chance of contralateral popliteal artery
- aneurysm

 AAAs are associated with popliteal an

- Presentation:
 Asymptomatic 80%
 Symptoms:
 Abdo pain

 - Abrupt onset of pain = rupture or acute expansion of aneurysm

- Diagnosis:

 Usually incidental finding

 Physical exam

 Abdominal

 Pulsatile and expansile mass in epigastrium

 Assess for tenderness

 Iliac fossa pulses

 - Femoral pulsePopliteal pulses, feel for aneurysm

 - Imaging: US:
 - JS:
 O Pros:
 Easy diagnosis
 Accurate measurement of infra-renal diameter
 Easy, accessible, cheap
 No radiation
 Non-invasive
 - - Cannot visualise thoracic or supra-renal segment
 Can't establish relationship with renal arteries
 Operator-dependent
 - CT angiogram:
 - T angiogram.

 Pros:
 Reliable and reproducible
 Image entire aorta
 Detailed anatomy

 Cons:
 Contrast use

 - Radiation
 More expensive

- Risk factors:

 Smoker (10x)

 Male (4x)

 HTN 40% of pts with AAA have HTN

 Carotid artery stenosis 10% have AAA

- Common aetiology:

 Degenerative: Most common

 La in elastin and collagen in media

 Mild inflammatory response

 Increase in collagenase and elastase activity = further degradation of strength of artery wall

 - Aging Smoking HTN

 - Hypercholesterolaemia atherosclerosis
 Connective tissue disorders Marfan's, Ehlers-danlos syndrome

Less common aetiology:

- Dissection
 Cystic medial necrosis Familial thoracic aortic aneurysm Autosomal
- Syphilis

- Thrombosis Distal embolisation

Indications for Tx:

- 4cm needs referral to avascular surge If yearly enlargement is >10% per year Acute symptoms Repair threshold dependent on comorbidity

- AAA open repair:
 Replaces the diseased aneurysmal aorta with synthetic material

 - Longer hospital stay (7+ days)
 Cardiac and renal complications
 Spinal cord and lower limb ischaemia

- 3% of aneurysms
 Destruction of media and intima
 S.aureus, E.coli and Klebsiella species

- dominant Ehlers-danlos

Aneurysm physics: Laplace's law: T = P X R - T - tension - P - pressure - R - radius

- Prognosis: Complications of AAA:

 - Distal emuonacca.

 Rupture

 Pre-arrival mortality 50%

 Mortality for open repair of AAA 43%

 Mortality for EVAR repair 36%

 Elective repair mortality 1-3%

 - Tube or trouser graft
- AAA endovascular repair:

 Percutaneous access via both groins
 Graft inserted intraluminally below renal arteries
 Sealed with aorta and common iliac arteries trouser graft

 - o Pros:
 2 day stay in hospital
 Less invasive
 - Higher risk of long term complications
 10% of pts require further procedures
 Life long monitoring with US or CT if EV.

Obstructive lung diseases:

- COPD
- Asthma
- Bronchiectasis
- Chronic bronchiolitis

Obstructive diseases are airway diseases. Restrictive diseases are parenchymal diseases.

Chronic obstructive pulmonary disease:

Obstructive lung disease (incompletely reversible) that is progressive. Includes emphysema and chronic bronchitis.

Causes:

- Smoking
 Air pollution
 A1-antitrypsin deficiency causing protease mediated damage

Emphysema:

Enlarged air spaces and destruction of walls, loss of elasticity. Leads to airway collapse on exhalation.

<u>Chronic bronchitis:</u>
A COPD characterised by chronic productive cough (>3 months in 2 years). Mucous causes airflow impediment and irritation.

- Smoking
- Recurrent infections
- **Pollutants**

Stasis of mucous leads to recurrent infections

Emphysema = Type A "Pink puffers"	Chronic bronchitis = Type B "Blue bloaters"	
Cough develops later	Early cough	
Less common infections	Frequent infections	
Severe and early SOB	Mild, late SOB	
Little sputum	Copious sputum	
Low elastic recoil	Normal elastic recoil	
Hyperinflated chest/barrel chest	Hyperinflated chest	
Can maintain their PaO2	CO2 retention	
Low body mass	Overweight	

- Onset of dyspnoea
 - o Gradual
 - o Episodic exacerbation (usually infective)
- Severity
- Compared to baseline
- o SOB at metres, ADLs, speaking, rest
- Associated symptoms
 - o Persistent cough, usually worse in AM with mucoid sputum (clear/white)

Signs of respiratory distress in severe disease:

Tachypnoea

Tracheal tug

Accessory muscle use Pursed-lip breathing

- Chest tightness
- Wheezing
- Fatigue
- Poor appetite Weight loss
- High risk features
- - Frequent exacerbation Previous hospitalisation
 - ICU admission Oral steroid use
- Exacerbating factors
- Exercise
- Altitude
- Smoking
- Respiratory infections

Examination findings:

- "Barrel chest"
- Hyper-resonant percussion sounds
- Reduced air movement
- Over production of mucous
- Reduced chest expansion
- Prolonged expiratory phase

Pathophysiology of COPD:

- Increased cholinergic bronchomotor tone

 Muscarinic cholinergic receptors cause bronchoconstriction and mucous hypersecretion
 - Vagal innervation to larger airways
 - Small airways contain muscarinic receptors

Exacerbation of COPD: Any change in:

- Dyspnoea Cough
- Sputum
- Beyond day to day variation and acute in onset

Diagnosis:

- Hx + exam
- Spirometry FEV1
- Arterial blood gas (ABG) analysis O2 and CO2 levels
- Alpha-1 antitrypsin testing

B2 adrenoreceptor agonists (B2 AR): 1.

Directly dilate airway smooth muscle

- Short acting B2 AR (SABA):
 - Salbutamol, Terbutaline
 - Rapid onset: 5-10 mins
 - Short acting: 4-6 hrs
- Long acting B2 AR (LABA):
 Salmeterol, Formoterol
 Delayed onset: 15-20 mins
 - Long acting: 12 hours

- Side effects of B2 AR agonists:
 Tachycardia (action on heart B1)
 Muscle tremor (Skeletal B2 AR)

 - Restlessness
 - Hypokalaemia
 - Hypoxaemia

2. Muscarinic cholinergic receptor antagonists
Ach causes bronchoconstriction - inhibits this effect - Inhibits vagal mediated airway tone Greater effect in COPD than asthma due to affect on vagal tone

- Short acting muscarinic antagonists (SAMA):
 - Ipratropium
 Onset: 20-30 mins

 - Effect: 4-8hrs
- Long acting muscarinic antagonists (LAMA):
 - Tiotropium
 1-2x daily dosing
- Start with short acting relivers: SAMA better than SABA
 Add long term bronchodilators: LAMA or LABA

Inhaled corticosteroids

- Reduce airway inflammation, swelling and mucous production (suppress the immune system and inhibit inflammatory cells)

 - Beclomethasone, Fluticasone, Cyclosonide
 Reduced pro-inflammatory proteins + increases anti-inflammatory proteins

Non-pharmacological:

- Stop smoking
- Influenza vaccine
- Exercise
- Treat comorbidities: CVD, lung cancer, anxiety, osteoporosis
- Pulmonary rehabilitation: Exercise, nutrition
- O2 therapy in severe hypoxaemia
 - o Aim for 88-92% sats (treat if <88%)
 - o Why don't you always give O2?
- Giving O2 causes CO2 rises = drowsiness = risk of aspiration
- Positive airway pressure in exacerbations

Non-pharmacological management:

- Physiotherapy
- Maintain adequate nutrition - Regular physical activity
- Encourage sitting up Encourage to stop smoking

Chronic kidney disease (CKD)

Sunday, 12 October 2025

CKD:

A decline in kidney function - At least 3 months of reduced eGFR (<60 mL/minute/1.73m²) OR Evidence of kidney damage with or without reduced eGFR for >3 months with evidence of:

- Haematuria (after exclusion of urological causes)
- Structural abnormalities
- Pathological abnormalities (e.g. on renal biopsy)

Presentation = Non-specific:

- Lethargy
- Nocturia
- Nausea
- Pruritus
- Restless legs
- Dyspnoea
- Haematuria (usually microscopic)
- HTN

Signs of ESRF:

- Pruritus
- Electrolyte imbalances
- Metabolic acidosis (loss of HCO3-)
- Severe nausea
- Neurological impairment (renal/uraemic encephalopathy)

eGFR	Description	Symptoms
Normal >90	Stage 1: Below normal to mild loss of kidney function	Often no Sx
Mild 60-89	Stage 2: Mild to moderate loss of kidney function	- HTN - Protein in urine
Moderate 30-59	Stage 3: Moderate to severe loss of kidney function	- Anaemia - Early bone disease
Severe 15-29	Stage 4: Severe loss of kidney function	- Fatigue - Swelling - N+V
ESRF <15	Stage 5: Kidney failure: Dialysis/transplant	- Kidney failure

3 categories of CKD:

- Glomerular (glomerulonephritis)
 - o Nephritic syndromes
 - o Nephrotic syndromes
- Tubulo-interstitial
 - o Acute tubular necrosis
 - o Acute and chronic tubulointerstitial nephritis
 - o Chronic pyelonephritis
 - Myeloma kidney
- Vascular
 - o Benign hypertensive nephrosclerosis
 - o Malignant hypertensive nephrosclerosis
 - Renal artery stenosis

Risk factors:

- Obesity (BMI >30)
- Diabetes
- HTN
- CVD (HF, MI, stroke)
- FHx
- Alcohol
- >60yo
- ATSI

Complications of CKD:

- Coronary artery disease
- Metabolic acidosis
- Fluid retention Hyperkalaemia
- Increased infection risk
- Anaemia
 - o D/t reduced renal output of EPO
- Bone mineral disease (less active Vit D (calcitriol)
- Uraemia

4 top causes of CKD:

- Diabetic nephropathy most common
- Chronic glomerulonephritis
- Hypertensive nephropathy
- Polycystic kidney disease (autosomal dominant)

How to distinguish between these 4 causes:

Urine + ultrasound. Why these 2 tests?

- Proteinuria occurs before a reduction in kidney function = 1st sign of diabetic nephropathy

	Urine	US
Diabetic nephropathy	Protein	Normal or large kidneys
Glomerulonephritis	Blood + protein	Small shrunken kidneys
Hypertensive nephropathy	Normal	Small, asymmetrical kidneys
ADPKD	Normal	Diagnostic for this condition

Does urine volume help?

- No reduction until kidney function is <1-2%
- Can still make 15L of urine per day with 10% renal

3 prognostic markers of CKD:

- A: ACR = Albumin : Creatinine ratio (proteinuria)
- B: BP HTN
- C: Creatinine/eGFR

How to calculate eGFR:

- Age
- Gender
- Serum creatinine

What the presence of both protein and blood in the urine means:

- Must be a glomerulonephritis
- Unless it's a diabetic (proteinuria) with a UTI

Management - How to prevent progressive renal failure:

- 1. Reduce proteinuria ACE-I
- Good BP control
- Good glucose control
- SGLT-2 inhibitors
- 5. GLP-1 agonists (if diabetic nephropathy)