Introduction to Pharmacokinetics and Pharmacodynamics

Pharmacokinetics

- What the body does to the drug, the disposition of a drug in the body
- How the body absorbs, distributes, metabolises and eliminates/excretes the drug
- Absorption
 - Different routes of administration lead to different rates of absorption and by extension, different concentration-time profiles
 - Choice of route of administration is dependent on
 - Time for effect to take place, is a rapid onset required?
 - Convenience
 - Physiochemical properties of the drug
 - Cost
 - Location of action, local vs. systemic
 - Bioavailability
 - Fraction of a dose absorbed
 - Determines the dose adjustment between different routes of administration
- Distribution
 - The drug in plasma and tissues
 - Volume of distribution, (volume e.g. L OR L/kg)
 - Extent of distribution
 - Determines the loading dose/initial dose
- Metabolism
 - o The drug is made into metabolite (more water soluble), ready for elimination
- Elimination
 - Main routes of elimination are;
 - Renally cleared into the urine
 - Hepatic/biliary clearance into the stool
 - Clearance (volume/time e.g. L/H)
 - Efficiency of drug elimination
 - Determines the dose rate
 - Is cumulative, i.e. a drug can be cleared both renally and biliary, they add together to make total clearance
 - o Half life (t_{1/2}) (time e.g. hours)
 - Determines how long a drug stays in the body, determines the frequency of dosing

Concentration-Time Relationship (PK)

Mono-Exponential Pharmacokinetics

Relationship Between Drug Concentration and Time After Dose Administration

One Compartment Model (mono-exponential PK)

Cp is the drug concentration in plasma

Vd is the volume of the compartment or volume of distribution

- Assumes the body is one compartment and all the drug is distributed instantaneously and uniformly throughout the entire compartment, there are no barriers within the environment
- Assumes the volume of each compartment remains constant
- Ka represents the rate that the drug is absorbed into the body (absorption rate constant)
- Kel represents the rate that the drug is eliminated from the body (elimination rate constant)
- Cp is plasma concentration of the drug, (Cp = A/V), amount/ volume, (Cp = Cp⁰x e^{-Kel x t})
- Vd is volume of distribution, in a one-compartment model it is constant, Vd = dose/Cp⁰
- Any decline in plasma drug concentration is only by elimination
- A one compartment model displays mono-exponential pharmacokinetics, first order output

Concentration-Time Profiles (First Order)

Intravenous Infusions

Intravenous Infusion

- Is a long term infusion
- Zero-order input and first-order output both occurring at the same time
- There is a constant zero-order rate of input, this is good because
 - Drugs can be given with fluids, electrolytes or nutrients
 - The rate of infusion can be easily regulated to fit individual needs
 - A constant rate of input prevents fluctuations

Steady State Concentration

- When you first administer a drug,
 - o The input rate is more than the elimination rate
 - As plasma concentration increases, the elimination rate also increases
 - o Eventually, the elimination rate reaches a maximum equal to the infusion rate
 - Here, steady state concentration has been reached
 - Input rate = output rate
- You can not get to steady state concentration faster by increasing the input rate
- Steady state concentration is dependent on the half-life of the drug (4.3 half-lives)
- Input rate = steady state concentration x clearance
- Steady state concentration = input rate/ clearance

Plasma Concentration During Infusion

Plasma Concentration = input rate/ (Vd x kel) x (1-e-kelkt)

Plasma Concentration After Infusion

Plasma Concentration = plasma concentration (at end of infusion) x e^{-keixt}

Drug Metabolism - Hepatic Physiology

The Liver

- Maintains blood glucose
 - Glucagon causes the liver to release glucose
 - Insulin causes the liver to store glucose as glycogen
- Maintains/distributes cholesterol
 - Too much cholesterol may build up in blood vessels, the liver removes it via bile
 - If there is not enough cholesterol, the liver converts triglycerides to cholesterol
- Maintains pH levels
 - The liver accounts for 20% of the body's oxygen consumption and therefore produces bicarbonate – this is offset by urea synthesis which uses up bicarbonate
 - When the liver produces ketone bodies, it lowers blood pH
- Synthesis of amino acids
 - The liver synthesises most non-essential amino acids
 - Liver also breaks down amino acids and repackages it into urea
- Neutralisation of Neurotransmitters, Hormones and Drugs
 - The liver breaks down serotonin, oxytocin, oestrogen and testosterone etc.
- Produces ketone bodies, amino acids, albumin, transport proteins, coagulation factors etc.
- Distributes cholesterol and triglycerides
- Removes waste products
- Destruction of pathogens and old red blood cells
 - The liver destroys some bacteria and viruses
 - When the liver breaks down old reb blood cells, bilirubin is a byproduct
- Makes bile and synthesises bile salts
 - o Produces 600mL to 1 L per day
 - Assists in the breakdown of fats in the gut
 - Bile is alkaline and helps to neutralise stomach acid
 - Biliary excretion the removal of toxin/drug products from the blood into the bile and then removed from the body via the gut
- Hepatic Portal Vein
 - o From the GI tract to the liver
 - Deoxygenated, nutrient rich and low pressure
- Hepatic Portal Artery
 - o From the heart to the liver
 - Oxygenated and high pressure

Liver Failure

- Low blood sugar
- Bleeding easily
- Excess oestrogen
- Blood pressure changes
- Jaundice
- Infection
- Acidosis