Topic 1: Cell Diversity

- Theory of natural selection: Organisms produce more offspring than are able to survive in their environment. Those that are better physically equipped survive, grow and reproduce
- Cell theory:
 - o All organisms are made of cells
 - Cells are the basic units of life
 - Cells come from pre-existing cells that have multiplied
 - Organisms are made of cells and water + other minerals
 - Different types of cells, e.g. blood cells (red and white), skin cells, muscle cells
- Classes of cells:
 - Prokaryotes: Cells that lack a nucleus and other organelles
 - Eukaryotes: Cells that contain a nucleus and organelles
- Apoptosis: Programmed Cell Death
 - As many as 10¹¹ cells can die in one day in a living organism and are replaced by new ones
- Tissues: complex organizational arrangements of cells to fulfill specific functions
 - Combine to form organs
 - o Organs combine to form an organ system
- Types:
 - Epithelial Skin + Lining of hollow organs
 - Connective Soft padding tissue (Made of fibroblasts and adipose)
 - Muscle Cardiac, Smooth and Skeletal Muscle
 - Nervous Brain, Spinal cord and nerves
 - Adipose Fat
- Human Genome Project: 1990-2003, mapped the entire DNA of a human
 - Around 20000 protein-coding genes in the human body
 - Humans are made of roughly 60-65% fluids and 35-40% solids (more fluid in men than women)

Terminology:

- Systems need balance: E.g. acid-base buffers for CO₂/Electrolytes
- This is harder to achieve with the complexity of the human body (tightly packed + high surface area to volume ratio)
- Developments have been able to alter human germ lines and genes to produce offspring that becomes less susceptible to diseases
 - Raised many ethical concerns and controversies
- Other developments (still in development):
 - Exoskeletons: Battery-powered system that attaches to body and allows for remote controlled movements, allowing people to walk with a natural gait
 - Bionic ears, eyes and artificial hearts: Implants that mimic the functions of these organs by using electric impulses and transmitters
 - o 3D printed organs (e.g. kidneys)

Topic 2: Cell Structure

- Humans start as one cell (fertilised ovum) that multiplies into an organism (of around 37 trillion cells)
- Cells grow by themselves and perform their functions on their own (e.g. individual heart and neuron cells beat/vibrate and are self-sufficient given the required energy intake)
- All have common structural features, but different functions and structures

Cell Breakdown:

- Nucleus: Controls cell functions
- Nucleolus: Site of RNA transcription and ribosome biogenesis (ribosomes cause protein synthesis and DNA replication)
- Rough endoplasmic reticulum: Involved in protein synthesis and folding
- Smooth endoplasmic reticulum:
 Lipid and steroid hormone production
- Golgi apparatus: Sorts proteins from the ER (endoplasmic reticulum)
- Mitochondria: Makes ATP (energy)
 to power cells through respiration, contain their own DNA
- Lysosomes: Acidic organelles for waste breakdown and disposal
- Cytoskeleton: Made of filaments and tubules, used for structure, support and movement

- The plasma membrane (phospholipid bilayer) is the lining of the cell
- The membrane is a thick sheet (non-rigid) with hydrophilic edges and a hydrophobic interior (intercellular space is hydrophobic)
 - Impermeable to most molecules and ions (without facilitated diffusion):
 - Metal ions
 - Large molecules (e.g. proteins and RNA)
 - Hydrophilic molecules like glucose
 - Let water + small uncharged molecules through (e.g. oxygen, carbon dioxide)
- Movement of molecules is by diffusion (molecules become equally distributed due to their random motion. Facilitated diffusion uses carrier proteins to pass molecules/ions through the membrane)
 - Water also follows diffusion, and flows to where its concentration is lower, as to reach an equilibrium concentration (where concentration [in M] is the same on both sides)
 - Osmosis: Movement of water through a semi-permeable membrane (e.g. skin, plasma membrane) to a compartment that has a higher concentration of solute
 - Facilitated diffusion: When carrier proteins facilitate the movement of molecules through the cell membrane
 - Passive transport:
 Movement along the
 concentration gradient
 (high-> low concentration by
 diffusion) without using
 energy
 - Active transport: Movement against the concentration gradient using ATP energy

