Week 7 Risk And Return:

Historical Returns and Volatility:

One Period Realised Return:

-
$$R_{t+1} = \frac{D_{t+1} + P_{t+1} - P_t}{P_t} = \frac{D_{t+1}}{P_t} + \frac{P_{t+1} - P_t}{P_t}$$

$$R_{t+1} = \frac{D_{t+1} + P_{t+1} - P_t}{P_t} = \frac{D_{t+1}}{P_t} + g$$

- $R_{t+1} = Dividend Yield + Capital Gain$ When No dividends:

$$- R_{t+1} = \frac{P_{t+1} - P_t}{P_t}$$

Compounded Period Realised Return:

-
$$R_n = (1 + R_1) * (1 + R_2) ... * (1 + R_t) - 1$$

■ Product of 1 + each periods return; then subtract 1.

-
$$CG_n = (1 + CG_1) * ... * (1 + CG_t) - 1$$

-
$$DY_n = (1 + DY_1) * ... * (1 + DY_t) - 1$$

Annualised Period Realised Return:

- One period holding return * n
 - \blacksquare n = periods in a year.
 - → Annualized return from 6-month return: $R_{t+1} * 2$
 - → Annualized dividend yield (DY) from 1-month return: DY*12

Arithmetic Historical Average Return:

$$- \bar{R} = \frac{1}{T}(R_1 + R_2 + \dots + R_T)$$

- $E(R) = \bar{R}$
- Excel: AVERAGE ()

Geometric Average (better rep. of what happened)

- (1) 1+ Return (for all returns so all +)
- (2) Excel: GEOMEAN ()
- (3)(2) 1 = geometric average return

Historical Variance and SD n

$$- Var(R) = \frac{1}{T-1} \sum (R_i - \bar{R})^2$$

■ Excel: VAR.S (Arthem. Returns)

- SD(R) =
$$\sqrt{VAR(R)}$$

■ Excel: STDEV.S(Arthem. Returns) SD is measure of risk or volatility.

Interpreting Historical Volatility: PI

-
$$PI = \overline{R} \pm z * SD(R)$$

$$\mathbf{z} = \frac{X-average}{SD}$$

- 95% Returns fall between 2 SD of ER:

$$\bar{R} \pm 2 * SD(R)$$

- 67% Returns fall between 1 SD of ER:

$$\bar{R} \pm 1 * SD(R)$$

Future Returns and Volatility:

Single Asset Expected Return:

-
$$E(R) = \sum p_i * R_i$$

Single Asset Expected Volatility:

-
$$Var(R) = \sum_{i=1}^{T} p_i * [R_i - E(R)]^2$$

- \blacksquare T = Total Number of States
- Pi = Probability state (i) will occur
- Ri = Expected Return if state (i) occurs

- SD(R) =
$$\sigma(R) = \sqrt{VAR(R)}$$

■ *SD* is the measure of risk or volatility

Portfolio Weights:

- $Value_i = no.shares * Price$
- $Portfolio\ Value = \sum Value_i$

-
$$W_i = \frac{Value_i}{Portfolio\ Value}$$

N Asset Portfolio Expected Return:

-
$$E(R_p) = \sum w_j * E(R_j)$$

Variance + SD of a 2 Asset Portfolio:

-
$$VAR(R_p) = w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + 2p_{1,2}w_1w_2\sigma_1\sigma_2$$

-
$$SD(R_p) = \sqrt{Var(R_p)}$$

Risk Diversification and Port Risk:

Portfolio Return: weighted average

-
$$E(R_A) \le E(R_p) \le E(R_B)$$

Portfolio Volatility: not weighted average

-
$$SD(R_p)$$
 < weighted sum of risks

Portfolio Total Risk:

-
$$\sigma_{Total}^2 = \sigma_{Independent}^2 + \sigma_{Common}^2$$

Asset Pricing:

Ranking Portfolios: (higher PC = better portfolio).

- Portfolio Compensation =
$$\frac{Portfolio\ return}{Portfolio\ risk}$$

■ Also called Reward to Risk Ratio

Market Portfolio: MM has highest RR Ratio

-
$$\sigma_{Total}^2 = \sigma_{Independent}^2 + \sigma_{MARKET RISK}^2$$

$$\bullet \quad \sigma_{Total}^2 = \sigma_{MARKET\ RISK}^2$$

CAPM

Return Risk Compensation for Market Portfolio:

$$\frac{\text{Market portfolio risk premium}}{\text{Market portfolio risk}} = \frac{(E(R_m) - R_f)}{\sigma_{Sys,M}^2}$$

$$\blacksquare \quad E(R_m) =$$

Weighted average of all risky assets

Return Risk Compensation for Individual asset:

$$- \frac{\text{Individual asset i risk premium}}{\text{Individual asset i systemtic risk}} = \frac{(E(R_i) - R_f)}{\sigma_{Sys,i}^2}$$

- \blacksquare $E(R_i) = Expected return for asset i$
- $E(R_i) R_f = RP$ for holding the SR of asset i.