

Data Integration

Data integration: process of integrating data from multiple sources to obtain a single view over all sources.

• Integration can be:
o Virtual: keep data in original sources, and have external keys/identifiers to link individual

records across the data sources
o Physical: copy data into one source/location and perform data integration in that single

source

Reasons for data integration:

• Refuse data from various legacy databases and systems
• Reconcile different points of views adopted by different systems
• Integrate external data

Main challenge of data integration: Heterogeneity

• At differential levels: source type, schemas, data types, data values, semantics

Three main tasks of data integration:

1. Schema mapping and matching
- Identify which attributes or attribute sets across database tables contain the same type of

information (corresponding columns)
- Analyse attribute names, not the attribute content

2. Record linkage / data matching / entity resolution

- Identify which records in one or more databases correspond to the same real-world entity
- Analyse content of attributes
- A special case is deduplication (or duplicate detection) in a single database

3. Data fusion

- Merge pairs or groups of records that correspond to the same entity into one clean, up-to-date and
consistent record that represents the entity

- Issues: spelling variations, incorrect values

Example: Woo (Web of Objects)
Aim: To enable various products in Yahoo! to synthesis knowledge-bases of entities relevant to their domains

• Knowledge graph of real-world entities which are connected based on their relationships

Requirements:

• Coverage: the fraction of real-world entities
o High coverage - knowledge graph/search engine - need a large fraction of what is in the real

world to be represented
• Accuracy: information must be accurate

o Data must be accurate (data quality) - no point in having incorrect information
o Difficult to assess whether something is accurate without looking at the source of the data

itself
• Linkage: the level of connectivity of entities

o Basic information that is not linked with entities or other information, then the search engine
is useless

o Provide better experience for consumers
• Identifiability: one and only one identifier for a real-world entity

o Every unique entity should have a unique identifier
o Need to query the entity using this identifier

• Persistence/ content continuity: variants of the same entity across time must be linked
o There has to be a way to look at the past of an entity - continuity of information has to be

correctly linked

o Concept of entity should continue over time even when characteristics of it change
• Multi-tenant: be useful to multiple portals

o If we have a large database of entities, it needs to be possible that different applications/web
portals can use the database (extract data into their own databases)

o Should facilitate providing data to other systems

Knowledge-base synthesis is the process of ingestion, disambiguation and enrichment of entities from a
variety of structured and unstructured data sources. Enrich data from various sources.
Challenges in this kind of system:

• Sheer scale of the data à hundreds of millions of entities daily
• Diverse domains à from hundreds of data sources
• Diverse requirements à multiple tenants, such as locals, movies, deals and events in the Yahoo

website

Woo Architecture

Importer Takes a collection of data sources as input (such as XML feeds, RDF content, relational

databases, or other custom formats)
• For each source, there will be a plug in that allows the data to be imported and

convert them to a specific internal structure called 'Woo schema'
• Each data source is converted into a common format called WOO schema
• The WOO Parcel, containing only the attributes needed for matching, is pushed to

the Builder
o Create WOO parcels for each of the entities in the system that only

contains attributes strictly needed for matching - more compact
representation of whole data

o Ineffective to pass all information in this architecture
o Only contains attributes strictly required for matching - much more compact

than passing huge amounts of data
o Large information about entities - inefficient to pass all information from one

model to another within this architecture.
Builder Performs the entity deduplication (record linkage/entity resolution) and produces a

clustering decision. It includes the subfaces: (1) Blocker, (2) Matcher, (3) Connected
Component Generator, and (4) Group Refiner.

• Blocker: Very expensive - cannot compare every record in one source with all
records in another source. To combat quadratic complexity, we use blocker /
blocking

o Identifies smaller blocks of data which contains information about entities,
which may be the same entity

• E.g., Group records with same postcodes
• Further processing is only done within these blocks

o Blocking reduces the complexity of comparing all records with one another

• Matcher: Software which compares individual records and calculates similarities
between them

o Output: pairs of records which have similarities
o Combination of ML and rule-based algorithms

• Connected Component Generator: Clustering process, where connected
components are computed to generate clusters of entities that are highly likely to
be matched

o Use calculated similarities in previous step to generate clusters of entities
that are very likely to be matched

o Input: pairs of records and calculated similarities
o Output: clusters built on similarities

• Grouper Refiner: (Optional stage) can further refine clusters (large clusters) into
smaller clusters

o Output: set of clusters

Finalizer Responsible for handling the persistence of object identifiers and the blending (fusion) of
the attributes of the (potentially many) entities that are being merged

Input: set of clusters
Output: WOO schema (all combined records)

• Two subfaces: PID Assignment and Blender
• PID Assignment: keeps continuity of content/entity that are being matched with

the algorithms in clustering
o Keeps track of how they evolve over time

• Blender: full entities are being fused/blended together according to a defined set of
functions

o Get all the information for record pairs in order to combine them together
into a single record

Exporter Generates a fully integrated and de-duplicated knowledge-based, either in a format

consistent with the WOO schema or in any custom format
• Exports the combined data into certain formats required for different systems
• Output: Creating a fully integrated and deduplicated knowledge graph of integrated

data that is meaningful

Curation Enables domain experts to influence the system behaviour through a set of GUIs, such as
forcing or disallowing certain matches between entities, or by editing attribute values

• Set of editorial tools that enable domain experts to influence the system behaviour
manually

o Manual alterations
• Influence based on their domain expertise and knowledge
• Want to ensure the WOO architecture produces high quality output

Schema Mapping and Matching

Schema matching problem: generating correspondences between elements of two database schemas

• Difficult with large, complex databases
• Schema matching tries to solve this problem

Basic input to schema matching techniques:

• schema structures;
• element (attribute) names; and
• constraints, such as data types and keys.

Other inputs to basic schema matching:

• Synonyms
o Code = Id = Num = No
o Zip = Postal [code]

• Acronyms
o PO = Purchase Order
o UOM = Unit of Measure
o SS# = Social Security Number

• Data instances (attribute values)
o Key insight: Elements match if they have similar instances or value distributions

Many applications need correspondences:

• Data translation
o Object-to-relational mapping
o XML message translation (e.g., between different applications) - applications may exchange

data using XML schemas
o Data warehousing loading (ETL) - integrate data and ensure it is clean and consistent,

integrating different databases into the same warehouse

• Data integration
o ER (entity relationship) design tools
o Schema evolution (temporal changes) - new version of database system, new regulations,

merging companies or departments
o Record linkage

Taxonomy of Automatic Match Techniques

• Matcher combinations are either hybrid matches (e.g., that consider name and type similarity), or
composite matches

• Metadata-based: only look at the attributes and structure of databases
• Instance-based: look at the content of the databases
• Reuse-oriented: previously matched databases (e.g., dictionary book from previous databases)

o Past information can be fed into both metadata-based and instance-based matches

Schema Matching Techniques
• Linguistic matchers

o Names of attributes
o (String) similarity of concept/element names
o Based on dictionaries or thesauri, such as WordNet/ UMLS

• Structure-based matchers
o Consider similarity of ancestors/descendants
o Graph-based matching such as Similarity Flooding (Melnik et al., ICDE 2002)

• Instance-based matchers
o Record values
o Concepts with similar instances/annotated objects should match
o Consider all instances of a concept as a document and utilise document similarity (such as

TF-IDF) to find matching concepts

Instance-based ontology matching

• Concepts with most similar instances should match (requires shared/ similar instances for most
concepts)

o Structured trees that have concepts - each node corresponds to concept. Find concepts that
have the most similar instances

o Find elements which are in similar concepts which have similar descriptions
o Look at instances (individual nodes/concepts) of two ontologies

• Mutual treatment of entity resolution (instance matching) and ontology matching
• Promising for link discovery in the Linked Open Web of Data

o Identify links between similar objects and different websites/databases - related to WOO

Schema-matching is a multi-step process

• Input to schema matching: a set of schemas
o E.g., simple database schemas, ontology (concept descriptions)

Matcher Execution
(sub-workflow)

o Different ways to do this, often have more than one matcher
o Similarity-based matcher, instance-based matcher and concept-based

matcher
o Can run the matchers sequentially or independently (parallel), or a

mixed strategy
• Sequential manner: the output of one matcher may flow into the

second matcher
• Mixed: initial matcher, and results flow into a set of other matchers

Combination of
matcher results

o Information about attributes in different databases/ concepts in sub-trees
o May have contradicting results
o Must combine into a single result

Selection of
correspondences

o Best correspondences
o Good coverage is important - high number of correspondences - good

mapping
• Can use domain knowledge to do more matching

o May not be able to identify correspondences between all concepts

Issue: Large-scale matching

• Very large ontologies/ schemas (>10,000 elements)
o Quadratic complexity of evaluating the Cartesian product (match efficiency)

• Cannot compare every element/ concept
• Have to do blocking

o Difficult to find all right correspondences (match quality)
• Match quality will decrease as correspondences increase - more links between

matches
• Have to involve user - semi-automatic way to match

o Support for user interaction

• Many (>>2) ontologies/ schemas
o Holistic ontology/ schema matching

• May have to mix record linkage approach with schema matching approach
• Schema matching (identify correspondences) then do linking - iteratively to improve

overall linkage
o Clustering of equivalent concepts/ elements or linking to some hubs

• Hub = one core database/ ontology to which we add or map other smaller databases/
ontologies

Schema matching often requires user input - often not done fully automatically. User has to decide
matchers and their order.

Self-Tuning Match Workflows

• Semi-automatic configuration - user input required
o Selection and ordering of matchers
o Combination of match results
o Selection of correspondences (top-k, threshold, …)

• Prototype tuning frameworks (Apfel, eTuner, YAM)
o Use of supervised machine learning

• Training data from earlier schema-matching - can be used for related databases
o Need previously solved match problems for training

• Need large training dataset - time consuming to build or validate
o Difficult to support large schemas

• Heuristic approaches

o Use linguistics and structural similarity of input schemas to select matchers and their weights
• Assign weights to different matchers depending on their quality and appropriateness

o Favour matchers that give higher similarity values in the combination of matcher results
o Often, user with expertise in understanding the matcher technology and the domain will

choose.

• Rule-based approach
o Comprehensive rule set to determine and tune match workflow
o Rules often have to be developed manually using domain expertise
o Generally, developing rule-based learning approaches/systems are more time consuming

and difficult than ML-based, probabilistic approaches
o Use of schema features and intermediate match results

