Week 9: International corporate issues

Outline for Today:

- 1. The Cost of Capital for Foreign Investment
- 2. Project vs. Parent value
- 3. The Value of the Multinational Financial System

The Cost of Capital for foreign Investment:

The Weighted Average Cost of Capital (WACC)

- Foreign investment is often financed by a combination of equity and debt.
 - To reflect this, we use the weighted average cost of capital (WACC), which accounts for the proportionate cost of each component of financing.
 - $WACC = W_eK_e + W_dk_d$ (Note use of AFTER-TAX COST OF DEBT)
 - → where:
 - $\rightarrow k_e = cost \ of \ equity$
 - $\rightarrow k_d = AFTER TAX COST OF DEBT$
 - \rightarrow w = relevant propotion of capital coming from equity (w_e) and debt (w_d)

Key Considerations in WACC Calculation

- MNCs typically set target capital structures specific to each project.
 - This gives an indication of the respective weights of the permanent sources of financing.
- If no project-specific capital structure exists → use firms overll capital structure as proxy.
- Cost of equity and cost of debt must be project-specific, reflecting the risk of the individual project.
- Weights should reflect future capital structure for the project or subsidiary.
 - Many projects (or subsidiaries or assets) follow the parent's capital structure.
 - Some projects require different debt levels
 - (e.g., projects in high-risk environments may sustain less debt).

Example - Shell in Indonesia

- Shell is evaluating a new project in Indonesia.
 - The firm uses two sources of financing: long-term debt and common equity.
 - Debt ratio: 47% (so equity = 53%)
 - Cost of equity (ke): 14.70%
 - Pre-tax cost of debt (kd): 6%
 - Corporate tax rate: 21%
 - Compute WACC:
 - → WACC = 53% * 14.7% + (1 21%) * 6 * 47% = 10.0188%

Cost of Equity

- Equity holders have a residual claim on the firm's free cash flow (claim after ALL other shareholders), making them the most exposed to risk.
 - Cost of equity (ke): minimum (required) rate of return necessary to compensate investors to buy
 or hold the firm's stock
 - → Used for valuing future equity cash flows.

Capital Asset Pricing Model (CAPM)

- CAPM translates market risk into expected return for equity:
 - For an individual asset I its expected return E(Ri) is:
 - Where
 - → E(Ri) = Rf + Bi[E(Rm) Rf]
 - → Rris the risk-free rate, i.e. the return required on the time value of money.
 - → Bi is the beta of asset i, which measure how the asset's return comoves with the market
 - → E(Rm) is the expected return on the market portfolio
 - → E(Rm) RF is the premium demanded by investors for investing in the market portfolio.

Challenges for Foreign Projects

- Many projects lack historical data which is **NEEDED for proxy betas** from comparable firm or projects that share similar risk characteristics.

- Issues to consider:
 - 1. Should we use domestic or foreign (local) comparable firms as proxy?
 - → Prefer local firms in the same country and industry.
 - → Local firms better reflect the locak projects risk exposure.
 - → Use multiple proxies for reliability.
 - 2. Should we use domestic, foreign, or world market portfolio as the benchmark portfolio?
 - → Country-specific risk is diversifiable through international portfolio management.
 - · Globalization lead to lower cost of capital
 - → Should use the parent's market portfolio or world market portfolio depending on the parent's portfolio and belief on global market integration
 - Use world portfolio if believe capital markets are globally integrated
 - If not, use parent portfolio, also ensure comparability with domestic projects
 - → Using foreign market portfolio may overestimate cost of capital

Cost of Equity: Hamada Equation

- Beta from comparable firms reflects leveraged (debt-influenced) risk.
- Different proxy firms have different capital structures from that of the project

General Steps for estimating beta of a project:

- Calculate comparable firms beta relative to the parent's market
- De-lever the beta for each comparable firm
- Calculate the average all-equity/ unlevered beta

$$B_U = \frac{B_L}{1 + \frac{D}{F}(1 - t)}$$

Relevel the beta using project specific capital structure

$$B_L = B_U * (1 + \frac{D}{F}(1 - t))$$

Cost of debt:

The cost of debt is the return that lenders demand for financing a project with a given level of risk.

Borrowing Options for Foreign Subsidiaries

- Foreign subsidiaries can borrow:
 - In the parent company's market, or
 - In the local (subsidiary's) market

Key Considerations

- Borrowing in the parent's market does not eliminate foreign exchange risk.
- Borrowing in the **subsidiary's market** may reduce FX risk if the parent **can offset revenues with borrowing costs.**
- **After adjusting for currency appreciation/depreciation** (using parity conditions), the parent should theoretically **be indifferent** between borrowing in the parent or local marke

After-Tax Cost of Foreign Currency Debt

- The after-tax cost is influenced by:
 - Interest rate on debt (r)
 - Currency gains or losses (c)
 - Tax Effects (t)

$$r_d = r_{foreign}(1-t)(1+c) + c$$

Project and Parent Perspectives:

There are two ways to value a foreign project:

- Both are designed to measure the value of an international investment, but they view cash flows and discounting differently.
 - If international parity conditions hold (e.g., PPP, UIP) bot approaches should lead to the same NPV.
 - → In practice differences often arise due to **exchange rate risk**, inflation differentials and market imperfections.

(1) From The Projects Perspective:

- The **project's perspective** values the investment in the *foreign currency* where it operates.

The steps are:

- 1. Forecast cash flows in the foreign currency.
- 2. Discount those cash flows using the foreign currency discount rate.
- 3. Sum the present values to get the NPV in foreign currency
- 4. Convert the resulting NPV into the domestic currency using the current spot exchange rate.

$$V_0^{project} = S_{D/f} * \sum_{t=1}^{T} \frac{E[CF_t^f]}{(1+i_f)^t}$$

Logic: treat the foreign project as if it were standalone in its own economy. Only after determining its value in foreign currency do, you translate it into the domestic currency.

(2) From the Parents Perspective:

The parent's perspective translates each future foreign cash flow into domestic currency first (using forecasted exchange rates), then discounts them at the domestic discount rate.

The Steps are:

- 1. Forecast foreign currency cash flows E[CFtf]
- 2. **Convert each year's cash flow** into domestic currency using **expected future exchange rates** Sd/f,t.
- 3. Discount these domestic currency flows using the domestic discount rate idi
- 4. Subtract the domestic currency value of the initial investment to get NPV

$$V_0^{parent} = \sum_{t=1}^{T} \frac{E\left[CF_t^f\right] * S_{D/f,t}}{(1+i_d)^t}$$

Logic: This approach directly measures the value from the perspective of the parent company's shareholders, incorporating exchange rate forecasts into each year's cash flows.

PROJECT AND PARENT PERSPECTIVES DECISION MAKING:

		Parents Perspective	
		CFS are converted to the domestic currency at the expected future spot	
		rates, and then discounted	
		NPV < 0	NPV > 0
	NPV < 0	Reject the Project	Reject the project
			The project's intrinsic value is
			negative. NPV is <u>positive due to the</u>
			<u>favourable currency</u> movements.
			We can use other FX tools (or
Projects			money market transactions) to
Perspective			capture those if we want to
CFS are			speculate on the
discounted in			favourable movements.
the foreign	NPV > 0	Accept the project with care	Accept the Project
currency and		The project's intrinsic value is	The project's intrinsic value is
converted to the		positive. NPV is negative due to the	positive. Note that if the project's
domestic		adverse currency movements. <u>We</u>	NPV is greater than the parent's
currency at the		can use FX tools to hedge those risks	perspective, it implies adverse
current spot rate		(borrowing from the local currency	exchange movements; thus,
		(money market transaction), forward,	hedging
		future, option, swap, etc.).	can be beneficial.