BABS2202: Molecular Cell Biology

## **CELL CYCLE**

#### □ CELL DIVISION

#### **Features**

- Number of cells in human: ~1 billion per gram of tissue all derived from single cell (fertilised egg)
- Large numbers of cells must replicate often to produce adult human (or replace damaged cells)
- Essential that replication precisely regulated
- Process different in prokaryotic and eukaryotic cells

#### □ CELL CYCLE

#### **Features**

- Essential that cell division precisely regulated
- Phases of cell cycle must follow in correct order one phase must be completed before next phase begins
- Cell cycle times vary for different cell types for most human cells: between 10 and 30 hours, for E. coli: 20 minutes

## STUDYING CELL CYCLE

- Normal human cells grown in culture (in vitro) will not divide indefinitely:
  - o Human fibroblasts go through 25 40 cell divisions and stop enter replicative cell senescence
  - Immortalise human cells undergo mutations that allow to continue to grow indefinitely in culture (cell lines)
  - Cells derived from human cancers also grow indefinitely in culture
    - Most commonly used: human cell line derived from cervical cancer biopsy HeLa (from patient name)

#### □ PHASES OF CELL CYCLE

### **INTERPHASE**

#### **Features**

- Appears inactivate microscopically
- Longest part of cell cycle

| G1 (Gap or Growth 1) Phase | lost variable in length             |                                   |
|----------------------------|-------------------------------------|-----------------------------------|
|                            | irst phase after cell division      |                                   |
|                            | cells mature and make more cyte     | oplasm and organelles             |
|                            | lormal metabolic activities occur   |                                   |
|                            | reparation for S-phase              |                                   |
|                            | Cell requires external signal to ex | rit phase                         |
| S (Synthesis) Phase        | Replication of DNA and histones     |                                   |
| G2 (Gap or Growth 2) Phase | Cell prepares for division          |                                   |
|                            | synthesis of materials needed       | for mitosis (not DNA) - proteins, |
|                            | rganelles, microtubules, and cei    | ntrioles                          |

#### **G**<sub>0</sub> PHASE OF CYCLE

- Cells may exit cycle and enter Go stage

Quiescent/Senescent: Still metabolically active, but may be terminally differentiated (never divide again)

- G<sub>0</sub> can followed by re-entry into cell cycle
  - Most lymphocytes in human blood in G<sub>0</sub>
  - $\circ$  With proper stimulation, such as encountering appropriate antigen, stimulated to re-enter cell cycle (at  $G_1$ )
- Represents active repression of genes needed for mitosis

#### **□ MITOSIS**

- Proceeds through series of stages
  - Stages characterised by location and behaviour of chromosomes
  - Some conversions between stages irreversible transitions
- Requires formation of spindle
  - o Chromosomes separated by mitotic spindle

## BAB\$2202: Molecular Cell Biology

Spindle: Symmetrical, bipolar structure composed of microtubules that extend between two poles

- → At each pole: centrosome
- Spindle formation and function depend on dynamic behaviour of microtubules and associated motor proteins
  - o Spindle complex assembly of microtubules and microtubule-dependent proteins
  - o Microtubules highly organised with respect to polarity

# ☐ CELL PROLIFERATION IN ADULTS

- Cells vary in capacity to divide

| Never Divide                | • | Lens, nerve, and cardiac muscle cells                                     |
|-----------------------------|---|---------------------------------------------------------------------------|
| Normally do not Divide, can | • | Skin fibroblasts, smooth muscles, endothelial cells (line blood vessels), |
| be Stimulated to do so      |   | epithelial cells (lung, liver, kidney)                                    |
| Frequent Turnover           | • | Embryonal, haematopoietic, epithelial cells of skin and digestive tract   |
|                             | • | Cells do not replicate themselves – replaced by proliferative stem cells  |

## **CELL CYCLE REGULATION I**

#### ☐ MATURATION PROMOTING FACTOR

### **Key Subunits of MPF**

- Cyclin: protein whose levels vary (cycle) with cell cycle
- Cyclin-dependent kinase: enzyme that phosphorylates substrates only when bound by cyclin
- Fluctuating levels of MPF drives cell into and out of mitosis

#### **MPF ACTIVITY**

- Many studies on regulation of cell cycle conducted in yeast
  - Main cyclin-dependent kinase: Cdc2
- MPF regulates entry into mitosis by phosphorylating different proteins

### MPF Activities that will Induce Mitosis

| Change Induced                            | Direct Effect of MPF                                      |  |  |
|-------------------------------------------|-----------------------------------------------------------|--|--|
| Chromatin condensation                    | Phosphorylation of histone H1                             |  |  |
| Spindle formation                         | Phosphorylation of microtubule associated proteins (MAPs) |  |  |
| Nuclear envelope between fragmentation of | Phosphorylation of lamins                                 |  |  |
| Golgi and ER                              |                                                           |  |  |

- MPF directly phosphorylates lamin filaments
  - o Breakdown of lamin filaments required for mitosis

### □ CDK

CDK: Core of cell-cycle control system

→ CDK activity terminated by cyclin degradation

**Regulation of CDK Activity** 

| Regulation of ODR Activity |                                                                             |  |  |
|----------------------------|-----------------------------------------------------------------------------|--|--|
| Cyclin Binding             | Primary mechanism of regulation                                             |  |  |
|                            | Causes conformational change in CDK to allow protein kinase activity        |  |  |
|                            | Breakdown of cyclins regulates CDK activity                                 |  |  |
| Phosphorylation            | Can activate or inhibit kinase activity                                     |  |  |
|                            | Target amino acid residues lie adjacent to substrate binding site           |  |  |
| CKIs                       | Specific CDK inhibitors (CKIs) inhibit by binding to CDK-cyclin and masking |  |  |
|                            | substrate site                                                              |  |  |

## **CELL CYCLE REGULATION II**

### □ REGULATION 1: CYCLIN DEGRADATION

#### **Features**

- Short-lived proteins (cyclins A and B) degraded by ubiquitin/proteasome pathway
- Targeted for destruction by being ubiquitinated
- Involves covalent attachment of ubiquitin by set of enzymes (E1, E2, E3)
- Process requires energy

# Ubiquitin

- Highly conserved and essential for life
- Protein has 76 amino acids (8.5 kD) and essentially same in all species

#### **UBIQUITINATION**

- Involves multiple rounds of addition of Ub to target protein
  - E1: Ub activating enzyme
  - E2: Ub conjugating enzyme
  - o E3: Ub ligase

## SIGNALS FOR UBIQUITINATION

- Some proteins (such as cyclins) contain destruction box targets proteins for ubiquitination (cyclin destruction box)
- Amino acid at NH-terminal of box acts as signal for ubiquitination

| NH-Terminal Amino Acid                     | Half Life    |
|--------------------------------------------|--------------|
| Stabilising:  Met, Gly, Ala, Ser, Thr, Val | > 20 hours   |
| Destabilising:                             |              |
| Ile, Gln                                   | ~ 30 minutes |
| Tyr, Glu, Pro                              | ~ 10 minutes |
| Leu, Phe, Asp, Lys, Arg                    | ~ 3 minutes  |

### **Anaphase Promoting Complex (APC)**

- Übiquitin ligase
- Can add ubiquitin to different proteins, depending on partner protein either Cdc20 or Cdh1
- APC also ubiquitinates mitotic cyclin → targets it for destruction

BAB\$2202: Molecular Cell Biology

## □ PHOSPHORYLATION

- MPF activity regulated by phosphorylation
  - o Y15: Tyrosine at position 15 in CDK
  - T161: Threonine at position 161 in CDK

#### □ CKIs

# CDK INHIBITORS (CKIs) INK4: Inhibitor of CDK 4

CIP/KIP: Cyclin/kinase inhibitor

p15: Protein that has molecular weight of 15 kDa (p16: 16 kDa)

→ Proteins initially only known by size and now retained designations

| Ink4 Family (Inhibitors of CDK4)        | • | Bind CDK and exclude cyclin from activating site  |
|-----------------------------------------|---|---------------------------------------------------|
|                                         | • | p15, p16, p18, p19 specific for G1 CDK            |
| CIPs and KIPs (Cyclin/Kinase Inhibitory | • | p21, p27, p57 act on S-phase CDK/cyclin complexes |
| Proteins)                               | • | Binding partly masks ATP binding site             |

# p27: CDK Inhibitor that Arrests Cell Cycle Progression

Binds CDK2/cyclin A (S phase) complex